{"title":"利用几种伪氨基酸组成类型和不同的机器学习算法对古菌磷脂酶进行分类和预测。","authors":"Nour Samman, Hassan Mohabatkar, Parisa Rabiei","doi":"10.22099/mbrc.2023.47756.1845","DOIUrl":null,"url":null,"abstract":"<p><p>Phospholipases, as important lipolytic enzymes, have diverse industrial applications. Regarding the stability of extremophilic archaea's proteins in harsh conditions, analyses of unusual features of their proteins are significantly important for their utilization. This research was accomplished to <i>in silico</i> study of archaeal phospholipases' properties and to develop a pioneering method for distinguishing these enzymes from other archaeal enzymes via machine learning algorithms and Chou's pseudo-amino acid composition concept. The non-redundant sequences of archaeal phospholipases were collected. BioSeq-Analysis sever was used with Support Vector Machine (SVM), Random Forests (RF), Covariance Discrimination (CD), and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) as powerful machine learnings algorithms. Also, different Chou's pseudo-amino acid composition modes were performed and then, 5-fold cross-validation was applied to the sequences. Based on our results, the OET-KNN predictor, with 96% accuracy, yields the best performance in SC-PseAAC mode by 5-fold cross-validation. This predictor also achieved very high values of specificity (95%), sensitivity (96%), Matthews's correlation coefficient (0.92), and accuracy (96%). The present investigation yielded a robust anticipatory model for the archaeal phospholipase prediction utilizing the tenets PseAAC and OET-KNN machine learning algorithm.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":"12 3","pages":"117-126"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using several pseudo amino acid composition types and different machine learning algorithms to classify and predict archaeal phospholipases.\",\"authors\":\"Nour Samman, Hassan Mohabatkar, Parisa Rabiei\",\"doi\":\"10.22099/mbrc.2023.47756.1845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phospholipases, as important lipolytic enzymes, have diverse industrial applications. Regarding the stability of extremophilic archaea's proteins in harsh conditions, analyses of unusual features of their proteins are significantly important for their utilization. This research was accomplished to <i>in silico</i> study of archaeal phospholipases' properties and to develop a pioneering method for distinguishing these enzymes from other archaeal enzymes via machine learning algorithms and Chou's pseudo-amino acid composition concept. The non-redundant sequences of archaeal phospholipases were collected. BioSeq-Analysis sever was used with Support Vector Machine (SVM), Random Forests (RF), Covariance Discrimination (CD), and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) as powerful machine learnings algorithms. Also, different Chou's pseudo-amino acid composition modes were performed and then, 5-fold cross-validation was applied to the sequences. Based on our results, the OET-KNN predictor, with 96% accuracy, yields the best performance in SC-PseAAC mode by 5-fold cross-validation. This predictor also achieved very high values of specificity (95%), sensitivity (96%), Matthews's correlation coefficient (0.92), and accuracy (96%). The present investigation yielded a robust anticipatory model for the archaeal phospholipase prediction utilizing the tenets PseAAC and OET-KNN machine learning algorithm.</p>\",\"PeriodicalId\":19025,\"journal\":{\"name\":\"Molecular Biology Research Communications\",\"volume\":\"12 3\",\"pages\":\"117-126\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology Research Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22099/mbrc.2023.47756.1845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/mbrc.2023.47756.1845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Using several pseudo amino acid composition types and different machine learning algorithms to classify and predict archaeal phospholipases.
Phospholipases, as important lipolytic enzymes, have diverse industrial applications. Regarding the stability of extremophilic archaea's proteins in harsh conditions, analyses of unusual features of their proteins are significantly important for their utilization. This research was accomplished to in silico study of archaeal phospholipases' properties and to develop a pioneering method for distinguishing these enzymes from other archaeal enzymes via machine learning algorithms and Chou's pseudo-amino acid composition concept. The non-redundant sequences of archaeal phospholipases were collected. BioSeq-Analysis sever was used with Support Vector Machine (SVM), Random Forests (RF), Covariance Discrimination (CD), and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) as powerful machine learnings algorithms. Also, different Chou's pseudo-amino acid composition modes were performed and then, 5-fold cross-validation was applied to the sequences. Based on our results, the OET-KNN predictor, with 96% accuracy, yields the best performance in SC-PseAAC mode by 5-fold cross-validation. This predictor also achieved very high values of specificity (95%), sensitivity (96%), Matthews's correlation coefficient (0.92), and accuracy (96%). The present investigation yielded a robust anticipatory model for the archaeal phospholipase prediction utilizing the tenets PseAAC and OET-KNN machine learning algorithm.
期刊介绍:
“Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.