Lisa Gambarotto, Samuele Metti, Matteo Corpetti, Martina Baraldo, Patrizia Sabatelli, Silvia Castagnaro, Matilde Cescon, Bert Blaauw, Paolo Bonaldo
{"title":"持续口服精脒补充可挽救COL6缺陷型肌病小鼠的功能和结构缺陷。","authors":"Lisa Gambarotto, Samuele Metti, Matteo Corpetti, Martina Baraldo, Patrizia Sabatelli, Silvia Castagnaro, Matilde Cescon, Bert Blaauw, Paolo Bonaldo","doi":"10.1080/15548627.2023.2241125","DOIUrl":null,"url":null,"abstract":"<p><p>COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of <i>COL6</i> genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both <i>col6a1</i> null (<i>col6a1</i><sup><i>-/-</i></sup>) mice and COL6-RM patients. We previously demonstrated that one-month <i>per os</i> administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in <i>col6a1</i><sup><i>-/-</i></sup> mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in <i>col6a1</i><sup><i>-/-</i></sup> mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.<b>Abbreviations:</b> AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"3221-3229"},"PeriodicalIF":14.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621270/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustained oral spermidine supplementation rescues functional and structural defects in COL6-deficient myopathic mice.\",\"authors\":\"Lisa Gambarotto, Samuele Metti, Matteo Corpetti, Martina Baraldo, Patrizia Sabatelli, Silvia Castagnaro, Matilde Cescon, Bert Blaauw, Paolo Bonaldo\",\"doi\":\"10.1080/15548627.2023.2241125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of <i>COL6</i> genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both <i>col6a1</i> null (<i>col6a1</i><sup><i>-/-</i></sup>) mice and COL6-RM patients. We previously demonstrated that one-month <i>per os</i> administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in <i>col6a1</i><sup><i>-/-</i></sup> mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in <i>col6a1</i><sup><i>-/-</i></sup> mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.<b>Abbreviations:</b> AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.</p>\",\"PeriodicalId\":8722,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"3221-3229\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2023.2241125\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15548627.2023.2241125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Sustained oral spermidine supplementation rescues functional and structural defects in COL6-deficient myopathic mice.
COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of COL6 genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both col6a1 null (col6a1-/-) mice and COL6-RM patients. We previously demonstrated that one-month per os administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in col6a1-/- mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in col6a1-/- mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.Abbreviations: AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.
期刊介绍:
Autophagy is a peer-reviewed journal that publishes research on autophagic processes, including the lysosome/vacuole dependent degradation of intracellular material. It aims to be the premier journal in the field and covers various connections between autophagy and human health and disease, such as cancer, neurodegeneration, aging, diabetes, myopathies, and heart disease. Autophagy is interested in all experimental systems, from yeast to human. Suggestions for specialized topics are welcome.
The journal accepts the following types of articles: Original research, Reviews, Technical papers, Brief Reports, Addenda, Letters to the Editor, Commentaries and Views, and Articles on science and art.
Autophagy is abstracted/indexed in Adis International Ltd (Reactions Weekly), EBSCOhost (Biological Abstracts), Elsevier BV (EMBASE and Scopus), PubMed, Biological Abstracts, Science Citation Index Expanded, Web of Science, and MEDLINE.