Ga-In Yu, Tae-Hoon Kim, Hee Tae Yu, Boyoung Joung, Hui-Nam Pak, Moon-Hyoung Lee
{"title":"传统风格驱动起搏导联左束分支起搏的学习曲线分析。","authors":"Ga-In Yu, Tae-Hoon Kim, Hee Tae Yu, Boyoung Joung, Hui-Nam Pak, Moon-Hyoung Lee","doi":"10.1155/2023/3632257","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Physiological conduction system pacing has attracted attention to overcome the dyssynchrony problems of conventional right ventricular pacing (RVP). Left bundle branch area pacing (LBBAP), which complements short combing of His bundle pacing (HBP), has emerged and has proven its efficiency and safety. In addition, initial experiences of LBBAP were mainly using lumen-less pacing lead, and the feasibility of stylet-driven pacing lead (SDL) was also established. The purpose of this study is to evaluate the learning curve for LBBAP using SDL.</p><p><strong>Methods: </strong>The study enrolled 265 patients who underwent LBBAP or RVP performed by operators without previous LBBAP experience at Yonsei University Severance Hospital in Korea between December 2020 and October 2021. LBBAP was performed using SDL with an extendable helix. The learning curve was evaluated by analyzing fluoroscopy and procedure times. And, before and after reaching the learning curve, we evaluated how much the time required for the LBBAP differed from the time required for the RVP.</p><p><strong>Results: </strong>LBBAP was successful in 50 of 50 (100.0%) patients left bundle branch pacing was successful in 49 of 50 (98.0%). In 50 patients who underwent LBBAP, mean fluoroscopy and procedural times were 15.1 ± 13.5 minutes and 59.9 ± 24.8 minutes, respectively. The plateau of fluoroscopy time reached in the 25th case and the plateau of procedure time reached in the 24th case.</p><p><strong>Conclusion: </strong>During the initial experience with LBBAP, fluoroscopy and procedural times improved with increasing operator experience. For operators who were experienced in cardiac pacemaker implantation, the steepest part of the learning curve was over the first 24-25 cases. It is shorter than the previously reported learning curves of HBP.</p>","PeriodicalId":16329,"journal":{"name":"Journal of interventional cardiology","volume":"2023 ","pages":"3632257"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212686/pdf/","citationCount":"1","resultStr":"{\"title\":\"Learning Curve Analyses for Left Bundle Branch Area Pacing with Conventional Stylet-Driven Pacing Leads.\",\"authors\":\"Ga-In Yu, Tae-Hoon Kim, Hee Tae Yu, Boyoung Joung, Hui-Nam Pak, Moon-Hyoung Lee\",\"doi\":\"10.1155/2023/3632257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Physiological conduction system pacing has attracted attention to overcome the dyssynchrony problems of conventional right ventricular pacing (RVP). Left bundle branch area pacing (LBBAP), which complements short combing of His bundle pacing (HBP), has emerged and has proven its efficiency and safety. In addition, initial experiences of LBBAP were mainly using lumen-less pacing lead, and the feasibility of stylet-driven pacing lead (SDL) was also established. The purpose of this study is to evaluate the learning curve for LBBAP using SDL.</p><p><strong>Methods: </strong>The study enrolled 265 patients who underwent LBBAP or RVP performed by operators without previous LBBAP experience at Yonsei University Severance Hospital in Korea between December 2020 and October 2021. LBBAP was performed using SDL with an extendable helix. The learning curve was evaluated by analyzing fluoroscopy and procedure times. And, before and after reaching the learning curve, we evaluated how much the time required for the LBBAP differed from the time required for the RVP.</p><p><strong>Results: </strong>LBBAP was successful in 50 of 50 (100.0%) patients left bundle branch pacing was successful in 49 of 50 (98.0%). In 50 patients who underwent LBBAP, mean fluoroscopy and procedural times were 15.1 ± 13.5 minutes and 59.9 ± 24.8 minutes, respectively. The plateau of fluoroscopy time reached in the 25th case and the plateau of procedure time reached in the 24th case.</p><p><strong>Conclusion: </strong>During the initial experience with LBBAP, fluoroscopy and procedural times improved with increasing operator experience. For operators who were experienced in cardiac pacemaker implantation, the steepest part of the learning curve was over the first 24-25 cases. It is shorter than the previously reported learning curves of HBP.</p>\",\"PeriodicalId\":16329,\"journal\":{\"name\":\"Journal of interventional cardiology\",\"volume\":\"2023 \",\"pages\":\"3632257\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212686/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interventional cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3632257\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interventional cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/3632257","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Learning Curve Analyses for Left Bundle Branch Area Pacing with Conventional Stylet-Driven Pacing Leads.
Background: Physiological conduction system pacing has attracted attention to overcome the dyssynchrony problems of conventional right ventricular pacing (RVP). Left bundle branch area pacing (LBBAP), which complements short combing of His bundle pacing (HBP), has emerged and has proven its efficiency and safety. In addition, initial experiences of LBBAP were mainly using lumen-less pacing lead, and the feasibility of stylet-driven pacing lead (SDL) was also established. The purpose of this study is to evaluate the learning curve for LBBAP using SDL.
Methods: The study enrolled 265 patients who underwent LBBAP or RVP performed by operators without previous LBBAP experience at Yonsei University Severance Hospital in Korea between December 2020 and October 2021. LBBAP was performed using SDL with an extendable helix. The learning curve was evaluated by analyzing fluoroscopy and procedure times. And, before and after reaching the learning curve, we evaluated how much the time required for the LBBAP differed from the time required for the RVP.
Results: LBBAP was successful in 50 of 50 (100.0%) patients left bundle branch pacing was successful in 49 of 50 (98.0%). In 50 patients who underwent LBBAP, mean fluoroscopy and procedural times were 15.1 ± 13.5 minutes and 59.9 ± 24.8 minutes, respectively. The plateau of fluoroscopy time reached in the 25th case and the plateau of procedure time reached in the 24th case.
Conclusion: During the initial experience with LBBAP, fluoroscopy and procedural times improved with increasing operator experience. For operators who were experienced in cardiac pacemaker implantation, the steepest part of the learning curve was over the first 24-25 cases. It is shorter than the previously reported learning curves of HBP.
期刊介绍:
Journal of Interventional Cardiology is a peer-reviewed, Open Access journal that provides a forum for cardiologists determined to stay current in the diagnosis, investigation, and management of patients with cardiovascular disease and its associated complications. The journal publishes original research articles, review articles, and clinical studies focusing on new procedures and techniques in all major subject areas in the field, including:
Acute coronary syndrome
Coronary disease
Congenital heart diseases
Myocardial infarction
Peripheral arterial disease
Valvular heart disease
Cardiac hemodynamics and physiology
Haemostasis and thrombosis