{"title":"认知行为分析的机器学习:数据集、方法、范式和研究方向。","authors":"Priya Bhatt, Amanrose Sethi, Vaibhav Tasgaonkar, Jugal Shroff, Isha Pendharkar, Aditya Desai, Pratyush Sinha, Aditya Deshpande, Gargi Joshi, Anil Rahate, Priyanka Jain, Rahee Walambe, Ketan Kotecha, N K Jain","doi":"10.1186/s40708-023-00196-6","DOIUrl":null,"url":null,"abstract":"<p><p>Human behaviour reflects cognitive abilities. Human cognition is fundamentally linked to the different experiences or characteristics of consciousness/emotions, such as joy, grief, anger, etc., which assists in effective communication with others. Detection and differentiation between thoughts, feelings, and behaviours are paramount in learning to control our emotions and respond more effectively in stressful circumstances. The ability to perceive, analyse, process, interpret, remember, and retrieve information while making judgments to respond correctly is referred to as Cognitive Behavior. After making a significant mark in emotion analysis, deception detection is one of the key areas to connect human behaviour, mainly in the forensic domain. Detection of lies, deception, malicious intent, abnormal behaviour, emotions, stress, etc., have significant roles in advanced stages of behavioral science. Artificial Intelligence and Machine learning (AI/ML) has helped a great deal in pattern recognition, data extraction and analysis, and interpretations. The goal of using AI and ML in behavioral sciences is to infer human behaviour, mainly for mental health or forensic investigations. The presented work provides an extensive review of the research on cognitive behaviour analysis. A parametric study is presented based on different physical characteristics, emotional behaviours, data collection sensing mechanisms, unimodal and multimodal datasets, modelling AI/ML methods, challenges, and future research directions.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390406/pdf/","citationCount":"1","resultStr":"{\"title\":\"Machine learning for cognitive behavioral analysis: datasets, methods, paradigms, and research directions.\",\"authors\":\"Priya Bhatt, Amanrose Sethi, Vaibhav Tasgaonkar, Jugal Shroff, Isha Pendharkar, Aditya Desai, Pratyush Sinha, Aditya Deshpande, Gargi Joshi, Anil Rahate, Priyanka Jain, Rahee Walambe, Ketan Kotecha, N K Jain\",\"doi\":\"10.1186/s40708-023-00196-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human behaviour reflects cognitive abilities. Human cognition is fundamentally linked to the different experiences or characteristics of consciousness/emotions, such as joy, grief, anger, etc., which assists in effective communication with others. Detection and differentiation between thoughts, feelings, and behaviours are paramount in learning to control our emotions and respond more effectively in stressful circumstances. The ability to perceive, analyse, process, interpret, remember, and retrieve information while making judgments to respond correctly is referred to as Cognitive Behavior. After making a significant mark in emotion analysis, deception detection is one of the key areas to connect human behaviour, mainly in the forensic domain. Detection of lies, deception, malicious intent, abnormal behaviour, emotions, stress, etc., have significant roles in advanced stages of behavioral science. Artificial Intelligence and Machine learning (AI/ML) has helped a great deal in pattern recognition, data extraction and analysis, and interpretations. The goal of using AI and ML in behavioral sciences is to infer human behaviour, mainly for mental health or forensic investigations. The presented work provides an extensive review of the research on cognitive behaviour analysis. A parametric study is presented based on different physical characteristics, emotional behaviours, data collection sensing mechanisms, unimodal and multimodal datasets, modelling AI/ML methods, challenges, and future research directions.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"10 1\",\"pages\":\"18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390406/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-023-00196-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00196-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Machine learning for cognitive behavioral analysis: datasets, methods, paradigms, and research directions.
Human behaviour reflects cognitive abilities. Human cognition is fundamentally linked to the different experiences or characteristics of consciousness/emotions, such as joy, grief, anger, etc., which assists in effective communication with others. Detection and differentiation between thoughts, feelings, and behaviours are paramount in learning to control our emotions and respond more effectively in stressful circumstances. The ability to perceive, analyse, process, interpret, remember, and retrieve information while making judgments to respond correctly is referred to as Cognitive Behavior. After making a significant mark in emotion analysis, deception detection is one of the key areas to connect human behaviour, mainly in the forensic domain. Detection of lies, deception, malicious intent, abnormal behaviour, emotions, stress, etc., have significant roles in advanced stages of behavioral science. Artificial Intelligence and Machine learning (AI/ML) has helped a great deal in pattern recognition, data extraction and analysis, and interpretations. The goal of using AI and ML in behavioral sciences is to infer human behaviour, mainly for mental health or forensic investigations. The presented work provides an extensive review of the research on cognitive behaviour analysis. A parametric study is presented based on different physical characteristics, emotional behaviours, data collection sensing mechanisms, unimodal and multimodal datasets, modelling AI/ML methods, challenges, and future research directions.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing