汽车装配手击过程中表面几何形状对手掌和拳头接触压力分布的影响

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Applied Biomechanics Pub Date : 2023-08-01 DOI:10.1123/jab.2022-0127
Lukas Hausmanninger, Igor Komnik, Mario Fleiter, Wolfgang Potthast
{"title":"汽车装配手击过程中表面几何形状对手掌和拳头接触压力分布的影响","authors":"Lukas Hausmanninger,&nbsp;Igor Komnik,&nbsp;Mario Fleiter,&nbsp;Wolfgang Potthast","doi":"10.1123/jab.2022-0127","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in repetitive strain injuries to the hand underscores the need for assessing and preventing musculoskeletal overuse associated with hand-intensive tasks. This study investigates the risk of overload injuries in soft tissue structures of the hand by analyzing the pressure distribution and location of peak pressure in the hand during snap-fit connection assembly in the automotive industry. The influence of the surface geometry of automotive trim components the pressure distribution and force imparted during strikes with the palm and the fist are investigated in a cohort of 30 subjects with extensive experience installing trim parts with snap-fit connections. Using the palm or fist (ulnar hand side) of the dominant hand, the subjects struck a simulation device with a flat, rounded, or edged surface geometry. The average peak force applied was 600 N (±122 N), nearly 3 times the force required to overcome the technical resistance of the snap-fit connector (220 N). Fist strikes exerted a 40% higher mean peak pressure and 18% higher mean pressure than did palm strikes. The pressure distribution in the region of the thenar eminence and soft tissue of the ulnar side of the hand did not differ between fist strikes on flat and edged surfaces. Considering the delicate anatomy of the hand, especially the hypothenar muscles on the ulnar side, assembling connection claps using the fist instead of the palm may prevent repetitive blunt trauma to the sensitive blood vessels and nerves in the palm.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 4","pages":"246-253"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Surface Geometry on Palm and Fist Contact Pressure Distribution During Strikes With the Hand in Automotive Assembly.\",\"authors\":\"Lukas Hausmanninger,&nbsp;Igor Komnik,&nbsp;Mario Fleiter,&nbsp;Wolfgang Potthast\",\"doi\":\"10.1123/jab.2022-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increase in repetitive strain injuries to the hand underscores the need for assessing and preventing musculoskeletal overuse associated with hand-intensive tasks. This study investigates the risk of overload injuries in soft tissue structures of the hand by analyzing the pressure distribution and location of peak pressure in the hand during snap-fit connection assembly in the automotive industry. The influence of the surface geometry of automotive trim components the pressure distribution and force imparted during strikes with the palm and the fist are investigated in a cohort of 30 subjects with extensive experience installing trim parts with snap-fit connections. Using the palm or fist (ulnar hand side) of the dominant hand, the subjects struck a simulation device with a flat, rounded, or edged surface geometry. The average peak force applied was 600 N (±122 N), nearly 3 times the force required to overcome the technical resistance of the snap-fit connector (220 N). Fist strikes exerted a 40% higher mean peak pressure and 18% higher mean pressure than did palm strikes. The pressure distribution in the region of the thenar eminence and soft tissue of the ulnar side of the hand did not differ between fist strikes on flat and edged surfaces. Considering the delicate anatomy of the hand, especially the hypothenar muscles on the ulnar side, assembling connection claps using the fist instead of the palm may prevent repetitive blunt trauma to the sensitive blood vessels and nerves in the palm.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\"39 4\",\"pages\":\"246-253\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2022-0127\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

手部重复性劳损的增加强调了评估和预防与手部密集型任务相关的肌肉骨骼过度使用的必要性。本研究通过分析汽车工业中卡扣式连接装配过程中手部压力分布和峰值压力位置,探讨了手部软组织结构过载损伤的风险。本文研究了汽车装饰件表面几何形状对用手掌和拳头击打时施加的压力分布和力的影响,研究对象为30名具有安装带有卡扣连接的装饰件丰富经验的研究对象。使用惯用手的手掌或拳头(尺骨侧),受试者击打具有平面、圆形或边缘几何表面的模拟装置。施加的平均峰值压力为600牛(±122牛),几乎是克服卡扣式连接器技术阻力(220牛)所需力的3倍。与手掌撞击相比,拳头撞击产生的平均峰值压力高40%,平均压力高18%。手掌尺侧软组织和大鱼际隆起区域的压力分布在平面和边缘表面的拳头打击之间没有差异。考虑到手部的精细解剖结构,特别是尺侧的鱼际下肌肉,用拳头代替手掌组装连接掌可以防止手掌敏感血管和神经的重复性钝性损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Surface Geometry on Palm and Fist Contact Pressure Distribution During Strikes With the Hand in Automotive Assembly.

The increase in repetitive strain injuries to the hand underscores the need for assessing and preventing musculoskeletal overuse associated with hand-intensive tasks. This study investigates the risk of overload injuries in soft tissue structures of the hand by analyzing the pressure distribution and location of peak pressure in the hand during snap-fit connection assembly in the automotive industry. The influence of the surface geometry of automotive trim components the pressure distribution and force imparted during strikes with the palm and the fist are investigated in a cohort of 30 subjects with extensive experience installing trim parts with snap-fit connections. Using the palm or fist (ulnar hand side) of the dominant hand, the subjects struck a simulation device with a flat, rounded, or edged surface geometry. The average peak force applied was 600 N (±122 N), nearly 3 times the force required to overcome the technical resistance of the snap-fit connector (220 N). Fist strikes exerted a 40% higher mean peak pressure and 18% higher mean pressure than did palm strikes. The pressure distribution in the region of the thenar eminence and soft tissue of the ulnar side of the hand did not differ between fist strikes on flat and edged surfaces. Considering the delicate anatomy of the hand, especially the hypothenar muscles on the ulnar side, assembling connection claps using the fist instead of the palm may prevent repetitive blunt trauma to the sensitive blood vessels and nerves in the palm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
期刊最新文献
Role of Hip Internal Rotation Range and Foot Progression Angle for Preventing Jones Fracture During Crossover Cutting. The Effect of Step Frequency and Running Speed on the Coordination of the Pelvis and Thigh Segments During Running. Effects of Different Inertial Measurement Unit Sensor-to-Segment Calibrations on Clinical 3-Dimensional Humerothoracic Joint Angles Estimation. Enhancing Sprint Performance and Biomechanics in Semiprofessional Football Players Through Repeated-Sprint Training. Investigation of a Theoretical Model for the Rotational Shot Put Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1