SMYD1a通过调节OPA1介导的嵴重塑和超复合体形成来保护心脏免受缺血性损伤。

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Basic Research in Cardiology Pub Date : 2023-05-22 DOI:10.1007/s00395-023-00991-6
Marta W Szulik, Steven Valdez, Maureen Walsh, Kathryn Davis, Ryan Bia, Emilee Horiuchi, Sean O'Very, Anil K Laxman, Linda Sandaklie-Nicolova, David R Eberhardt, Jessica R Durrant, Hanin Sheikh, Samuel Hickenlooper, Magnus Creed, Cameron Brady, Mickey Miller, Li Wang, June Garcia-Llana, Christopher Tracy, Stavros G Drakos, Katsuhiko Funai, Dipayan Chaudhuri, Sihem Boudina, Sarah Franklin
{"title":"SMYD1a通过调节OPA1介导的嵴重塑和超复合体形成来保护心脏免受缺血性损伤。","authors":"Marta W Szulik, Steven Valdez, Maureen Walsh, Kathryn Davis, Ryan Bia, Emilee Horiuchi, Sean O'Very, Anil K Laxman, Linda Sandaklie-Nicolova, David R Eberhardt, Jessica R Durrant, Hanin Sheikh, Samuel Hickenlooper, Magnus Creed, Cameron Brady, Mickey Miller, Li Wang, June Garcia-Llana, Christopher Tracy, Stavros G Drakos, Katsuhiko Funai, Dipayan Chaudhuri, Sihem Boudina, Sarah Franklin","doi":"10.1007/s00395-023-00991-6","DOIUrl":null,"url":null,"abstract":"<p><p>SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death. We also demonstrate that attenuated pathological remodeling is a result of enhanced mitochondrial respiration efficiency, which is driven by increased mitochondrial cristae formation and stabilization of respiratory chain supercomplexes within the cristae. These morphological changes occur concomitant with increased OPA1 expression, a known driver of cristae morphology and supercomplex formation. Together, these analyses identify OPA1 as a novel downstream target of SMYD1a whereby cardiomyocytes upregulate energy efficiency to dynamically adapt to the energy demands of the cell. In addition, these findings highlight a new epigenetic mechanism by which SMYD1a regulates mitochondrial energetics and functions to protect the heart from ischemic injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"20"},"PeriodicalIF":7.5000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203008/pdf/","citationCount":"0","resultStr":"{\"title\":\"SMYD1a protects the heart from ischemic injury by regulating OPA1-mediated cristae remodeling and supercomplex formation.\",\"authors\":\"Marta W Szulik, Steven Valdez, Maureen Walsh, Kathryn Davis, Ryan Bia, Emilee Horiuchi, Sean O'Very, Anil K Laxman, Linda Sandaklie-Nicolova, David R Eberhardt, Jessica R Durrant, Hanin Sheikh, Samuel Hickenlooper, Magnus Creed, Cameron Brady, Mickey Miller, Li Wang, June Garcia-Llana, Christopher Tracy, Stavros G Drakos, Katsuhiko Funai, Dipayan Chaudhuri, Sihem Boudina, Sarah Franklin\",\"doi\":\"10.1007/s00395-023-00991-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death. We also demonstrate that attenuated pathological remodeling is a result of enhanced mitochondrial respiration efficiency, which is driven by increased mitochondrial cristae formation and stabilization of respiratory chain supercomplexes within the cristae. These morphological changes occur concomitant with increased OPA1 expression, a known driver of cristae morphology and supercomplex formation. Together, these analyses identify OPA1 as a novel downstream target of SMYD1a whereby cardiomyocytes upregulate energy efficiency to dynamically adapt to the energy demands of the cell. In addition, these findings highlight a new epigenetic mechanism by which SMYD1a regulates mitochondrial energetics and functions to protect the heart from ischemic injury.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"118 1\",\"pages\":\"20\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203008/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-023-00991-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-023-00991-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

SMYD1是一种横纹肌特异性赖氨酸甲基转移酶,最初被证明在胚胎心脏发育中发挥关键作用,但最近我们证明,成年小鼠心脏中SMYD1的缺失会导致心脏肥大和衰竭。然而,SMYD1在心脏中过表达的影响及其在心肌细胞中对缺血应激反应的分子功能尚不清楚。在这项研究中,我们发现SMYD1a在小鼠中可诱导的心肌细胞特异性过表达可保护心脏免受缺血性损伤,如 > 梗死面积减少50%,心肌细胞死亡减少。我们还证明,病理重塑减弱是线粒体呼吸效率提高的结果,这是由线粒体嵴形成增加和嵴内呼吸链超复合体稳定驱动的。这些形态变化伴随着OPA1表达的增加而发生,OPA1是嵴形态和超复合体形成的已知驱动因素。总之,这些分析将OPA1确定为SMYD1a的新下游靶标,心肌细胞通过该靶标上调能量效率以动态适应细胞的能量需求。此外,这些发现突出了一种新的表观遗传学机制,SMYD1a通过该机制调节线粒体能量学和保护心脏免受缺血性损伤的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMYD1a protects the heart from ischemic injury by regulating OPA1-mediated cristae remodeling and supercomplex formation.

SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death. We also demonstrate that attenuated pathological remodeling is a result of enhanced mitochondrial respiration efficiency, which is driven by increased mitochondrial cristae formation and stabilization of respiratory chain supercomplexes within the cristae. These morphological changes occur concomitant with increased OPA1 expression, a known driver of cristae morphology and supercomplex formation. Together, these analyses identify OPA1 as a novel downstream target of SMYD1a whereby cardiomyocytes upregulate energy efficiency to dynamically adapt to the energy demands of the cell. In addition, these findings highlight a new epigenetic mechanism by which SMYD1a regulates mitochondrial energetics and functions to protect the heart from ischemic injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
期刊最新文献
Effect of ventricular fibrillation on infarct size after myocardial infarction: a translational study 4E-BP3 deficiency impairs dendritic cell activation and CD4+ T cell differentiation and attenuates α-myosin-specific T cell-mediated myocarditis in mice Effects of sex and obesity on immune checkpoint inhibition-related cardiac systolic dysfunction in aged mice Single-cell transcriptome unveils unique transcriptomic signatures of human organ-specific endothelial cells Investigating the cause of cardiovascular dysfunction in chronic kidney disease: capillary rarefaction and inflammation may contribute to detrimental cardiovascular outcomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1