{"title":"染色质修饰酶和组蛋白修饰在伏马菌素b1诱导的人肾细胞毒性中p16基因调控中的作用。","authors":"Ecem Fatma Karaman, Mahmoud Abudayyak, Sibel Ozden","doi":"10.1007/s12550-023-00494-2","DOIUrl":null,"url":null,"abstract":"<p><p>Fumonisin B<sub>1</sub> (FB<sub>1</sub>) poses a risk to animal and human health. Although the effects of FB<sub>1</sub> on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB<sub>1</sub> nephrotoxicity. The present study investigates the effects of FB<sub>1</sub> on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB<sub>1</sub>. Dose-dependent downregulation of chromatin-modifying genes was observed after FB<sub>1</sub> exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB<sub>1</sub> induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB<sub>1</sub> caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB<sub>1</sub> carcinogenesis through DNA methylation, and histone and chromatin modifications.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":"39 3","pages":"271-283"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B<sub>1</sub>-induced toxicity in human kidney cells.\",\"authors\":\"Ecem Fatma Karaman, Mahmoud Abudayyak, Sibel Ozden\",\"doi\":\"10.1007/s12550-023-00494-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fumonisin B<sub>1</sub> (FB<sub>1</sub>) poses a risk to animal and human health. Although the effects of FB<sub>1</sub> on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB<sub>1</sub> nephrotoxicity. The present study investigates the effects of FB<sub>1</sub> on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB<sub>1</sub>. Dose-dependent downregulation of chromatin-modifying genes was observed after FB<sub>1</sub> exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB<sub>1</sub> induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB<sub>1</sub> caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB<sub>1</sub> carcinogenesis through DNA methylation, and histone and chromatin modifications.</p>\",\"PeriodicalId\":19060,\"journal\":{\"name\":\"Mycotoxin Research\",\"volume\":\"39 3\",\"pages\":\"271-283\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycotoxin Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12550-023-00494-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-023-00494-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B1-induced toxicity in human kidney cells.
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.