使用混合智能决策树来识别成熟的B细胞肿瘤。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-08-04 DOI:10.1002/cyto.b.22136
Inès Vergnolle, Theo Ceccomarini, Alban Canali, Jean-Baptiste Rieu, François Vergez
{"title":"使用混合智能决策树来识别成熟的B细胞肿瘤。","authors":"Inès Vergnolle,&nbsp;Theo Ceccomarini,&nbsp;Alban Canali,&nbsp;Jean-Baptiste Rieu,&nbsp;François Vergez","doi":"10.1002/cyto.b.22136","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mature B-cell neoplasms are challenging to diagnose due to their heterogeneity and overlapping clinical and biological features. In this study, we present a new workflow strategy that leverages a large amount of flow cytometry data and an artificial intelligence approach to classify these neoplasms.</p><p><strong>Methods: </strong>By combining mathematical tools, such as classification algorithms and regression tree (CART) models, with biological expertise, we have developed a decision tree that accurately identifies mature B-cell neoplasms. This includes chronic lymphocytic leukemia (CLL), for which cytometry has been extensively used, as well as other non-CLL subtypes.</p><p><strong>Results: </strong>The decision tree is easy to use and proposes a diagnosis and classification of mature B-cell neoplasms to the users. It can identify the majority of CLL cases using just three markers: CD5, CD43, and CD200.</p><p><strong>Conclusion: </strong>This approach has the potential to improve the accuracy and efficiency of mature B-cell neoplasm diagnosis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Use of a hybrid intelligence decision tree to identify mature B-cell neoplasms.\",\"authors\":\"Inès Vergnolle,&nbsp;Theo Ceccomarini,&nbsp;Alban Canali,&nbsp;Jean-Baptiste Rieu,&nbsp;François Vergez\",\"doi\":\"10.1002/cyto.b.22136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mature B-cell neoplasms are challenging to diagnose due to their heterogeneity and overlapping clinical and biological features. In this study, we present a new workflow strategy that leverages a large amount of flow cytometry data and an artificial intelligence approach to classify these neoplasms.</p><p><strong>Methods: </strong>By combining mathematical tools, such as classification algorithms and regression tree (CART) models, with biological expertise, we have developed a decision tree that accurately identifies mature B-cell neoplasms. This includes chronic lymphocytic leukemia (CLL), for which cytometry has been extensively used, as well as other non-CLL subtypes.</p><p><strong>Results: </strong>The decision tree is easy to use and proposes a diagnosis and classification of mature B-cell neoplasms to the users. It can identify the majority of CLL cases using just three markers: CD5, CD43, and CD200.</p><p><strong>Conclusion: </strong>This approach has the potential to improve the accuracy and efficiency of mature B-cell neoplasm diagnosis.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cyto.b.22136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cyto.b.22136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

背景:成熟的B细胞肿瘤由于其异质性以及重叠的临床和生物学特征,诊断起来很有挑战性。在这项研究中,我们提出了一种新的工作流程策略,该策略利用大量流式细胞术数据和人工智能方法对这些肿瘤进行分类。方法:通过将分类算法和回归树(CART)模型等数学工具与生物学专业知识相结合,我们开发了一种准确识别成熟B细胞肿瘤的决策树。这包括细胞术已被广泛应用的慢性淋巴细胞白血病(CLL),以及其他非CLL亚型。结果:决策树易于使用,为用户提供了成熟B细胞肿瘤的诊断和分类。仅使用CD5、CD43和CD200三种标记物即可识别大多数CLL病例。结论:该方法有可能提高成熟B细胞肿瘤诊断的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of a hybrid intelligence decision tree to identify mature B-cell neoplasms.

Background: Mature B-cell neoplasms are challenging to diagnose due to their heterogeneity and overlapping clinical and biological features. In this study, we present a new workflow strategy that leverages a large amount of flow cytometry data and an artificial intelligence approach to classify these neoplasms.

Methods: By combining mathematical tools, such as classification algorithms and regression tree (CART) models, with biological expertise, we have developed a decision tree that accurately identifies mature B-cell neoplasms. This includes chronic lymphocytic leukemia (CLL), for which cytometry has been extensively used, as well as other non-CLL subtypes.

Results: The decision tree is easy to use and proposes a diagnosis and classification of mature B-cell neoplasms to the users. It can identify the majority of CLL cases using just three markers: CD5, CD43, and CD200.

Conclusion: This approach has the potential to improve the accuracy and efficiency of mature B-cell neoplasm diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1