Luiza Karina Gonçalves Meireles, Leticia Miquilini, Felipe André Costa Brito, Anderson Raiol Rodrigues, Leonardo Dutra Henriques, Einat Hauzman, Daniela Maria Oliveira Bonci, Marcelo Fernandes Costa, Olavo de Faria Galvão, Dora Fix Ventura, Paulo Roney Kilpp Goulart, Givago Silva Souza
{"title":"具有不同色觉基因型的簇毛卷尾猴在固定饱和度水平下的色觉分辨能力。","authors":"Luiza Karina Gonçalves Meireles, Leticia Miquilini, Felipe André Costa Brito, Anderson Raiol Rodrigues, Leonardo Dutra Henriques, Einat Hauzman, Daniela Maria Oliveira Bonci, Marcelo Fernandes Costa, Olavo de Faria Galvão, Dora Fix Ventura, Paulo Roney Kilpp Goulart, Givago Silva Souza","doi":"10.1007/s00359-023-01644-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research has proposed new approaches to investigate color vision in Old World Monkeys by measuring suprathreshold chromatic discrimination. In this study, we aimed to extend this approach to New World Monkeys with different color vision genotypes by examining their performance in chromatic discrimination tasks along different fixed chromatic saturation axes. Four tufted capuchin monkeys were included in the study, and their color vision genotypes were one classical protanope, one classical deuteranope, one non-classical protanope, and a normal trichromat. During the experiments, the monkeys were required to perform a chromatic discrimination task using pseudoisochromatic stimuli with varying target saturations of 0.06, 0.04, 0.03, and 0.02 u'v' units. The number of errors made by the monkeys along different chromatic axes was recorded, and their performance was quantified using the binomial probability of their hits during the tests. Our results showed that dichromatic monkeys made more errors near the color confusion lines associated with their specific color vision genotypes, while the trichromatic monkey did not demonstrate any systematic errors. At high chromatic saturation, the trichromatic monkey had significant hits in the chromatic axes around the 180° chromatic axis, whereas the dichromatic monkeys had errors in colors around the color confusion lines. At lower saturation, the performance of the dichromatic monkeys became more challenging to differentiate among the three types, but it was still distinct from that of the trichromatic monkey. In conclusion, our findings suggest that high saturation conditions can be used to identify the color vision dichromatic phenotype of capuchin monkeys, while low chromatic saturation conditions enable the distinction between trichromats and dichromats. These results extend the understanding of color vision in New World Monkeys and highlight the usefulness of suprathreshold chromatic discrimination measures in exploring color vision in non-human primates.</p>","PeriodicalId":54862,"journal":{"name":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatic discrimination in fixed saturation levels from tufted capuchin monkeys with different color vision genotypes.\",\"authors\":\"Luiza Karina Gonçalves Meireles, Leticia Miquilini, Felipe André Costa Brito, Anderson Raiol Rodrigues, Leonardo Dutra Henriques, Einat Hauzman, Daniela Maria Oliveira Bonci, Marcelo Fernandes Costa, Olavo de Faria Galvão, Dora Fix Ventura, Paulo Roney Kilpp Goulart, Givago Silva Souza\",\"doi\":\"10.1007/s00359-023-01644-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent research has proposed new approaches to investigate color vision in Old World Monkeys by measuring suprathreshold chromatic discrimination. In this study, we aimed to extend this approach to New World Monkeys with different color vision genotypes by examining their performance in chromatic discrimination tasks along different fixed chromatic saturation axes. Four tufted capuchin monkeys were included in the study, and their color vision genotypes were one classical protanope, one classical deuteranope, one non-classical protanope, and a normal trichromat. During the experiments, the monkeys were required to perform a chromatic discrimination task using pseudoisochromatic stimuli with varying target saturations of 0.06, 0.04, 0.03, and 0.02 u'v' units. The number of errors made by the monkeys along different chromatic axes was recorded, and their performance was quantified using the binomial probability of their hits during the tests. Our results showed that dichromatic monkeys made more errors near the color confusion lines associated with their specific color vision genotypes, while the trichromatic monkey did not demonstrate any systematic errors. At high chromatic saturation, the trichromatic monkey had significant hits in the chromatic axes around the 180° chromatic axis, whereas the dichromatic monkeys had errors in colors around the color confusion lines. At lower saturation, the performance of the dichromatic monkeys became more challenging to differentiate among the three types, but it was still distinct from that of the trichromatic monkey. In conclusion, our findings suggest that high saturation conditions can be used to identify the color vision dichromatic phenotype of capuchin monkeys, while low chromatic saturation conditions enable the distinction between trichromats and dichromats. These results extend the understanding of color vision in New World Monkeys and highlight the usefulness of suprathreshold chromatic discrimination measures in exploring color vision in non-human primates.</p>\",\"PeriodicalId\":54862,\"journal\":{\"name\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s00359-023-01644-8\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s00359-023-01644-8","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Chromatic discrimination in fixed saturation levels from tufted capuchin monkeys with different color vision genotypes.
Recent research has proposed new approaches to investigate color vision in Old World Monkeys by measuring suprathreshold chromatic discrimination. In this study, we aimed to extend this approach to New World Monkeys with different color vision genotypes by examining their performance in chromatic discrimination tasks along different fixed chromatic saturation axes. Four tufted capuchin monkeys were included in the study, and their color vision genotypes were one classical protanope, one classical deuteranope, one non-classical protanope, and a normal trichromat. During the experiments, the monkeys were required to perform a chromatic discrimination task using pseudoisochromatic stimuli with varying target saturations of 0.06, 0.04, 0.03, and 0.02 u'v' units. The number of errors made by the monkeys along different chromatic axes was recorded, and their performance was quantified using the binomial probability of their hits during the tests. Our results showed that dichromatic monkeys made more errors near the color confusion lines associated with their specific color vision genotypes, while the trichromatic monkey did not demonstrate any systematic errors. At high chromatic saturation, the trichromatic monkey had significant hits in the chromatic axes around the 180° chromatic axis, whereas the dichromatic monkeys had errors in colors around the color confusion lines. At lower saturation, the performance of the dichromatic monkeys became more challenging to differentiate among the three types, but it was still distinct from that of the trichromatic monkey. In conclusion, our findings suggest that high saturation conditions can be used to identify the color vision dichromatic phenotype of capuchin monkeys, while low chromatic saturation conditions enable the distinction between trichromats and dichromats. These results extend the understanding of color vision in New World Monkeys and highlight the usefulness of suprathreshold chromatic discrimination measures in exploring color vision in non-human primates.
期刊介绍:
The Journal of Comparative Physiology A welcomes original articles, short reviews, and short communications in the following fields:
- Neurobiology and neuroethology
- Sensory physiology and ecology
- Physiological and hormonal basis of behavior
- Communication, orientation, and locomotion
- Functional imaging and neuroanatomy
Contributions should add to our understanding of mechanisms and not be purely descriptive. The level of organization addressed may be organismic, cellular, or molecular.
Colour figures are free in print and online.