APCI:用于可视化和分析年龄-时期-队列数据的 R 和 Stata 软件包。

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2022-06-01 Epub Date: 2022-10-10 DOI:10.32614/rj-2022-026
Jiahui Xu, Liying Luo
{"title":"APCI:用于可视化和分析年龄-时期-队列数据的 R 和 Stata 软件包。","authors":"Jiahui Xu, Liying Luo","doi":"10.32614/rj-2022-026","DOIUrl":null,"url":null,"abstract":"<p><p>Social scientists have frequently attempted to assess the relative contribution of age, period, and cohort variables to the overall trend in an outcome. We develop an R package <b>APCI</b> (and Stata command apci) to implement the age-period-cohort-interaction (APC-I) model for estimating and testing age, period, and cohort patterns in various types of outcomes for pooled cross-sectional data and multi-cohort panel data. Package <b>APCI</b> also provides a set of functions for visualizing the data and modeling results. We demonstrate the usage of package <b>APCI</b> with empirical data from the Current Population Survey. We show that package <b>APCI</b> provides useful visualization and analytical tools for understanding age, period, and cohort trends in various types of outcomes.</p>","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"14 2","pages":"77-95"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237519/pdf/nihms-1897512.pdf","citationCount":"0","resultStr":"{\"title\":\"APCI: An R and Stata Package for Visualizing and Analyzing Age-Period-Cohort Data.\",\"authors\":\"Jiahui Xu, Liying Luo\",\"doi\":\"10.32614/rj-2022-026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social scientists have frequently attempted to assess the relative contribution of age, period, and cohort variables to the overall trend in an outcome. We develop an R package <b>APCI</b> (and Stata command apci) to implement the age-period-cohort-interaction (APC-I) model for estimating and testing age, period, and cohort patterns in various types of outcomes for pooled cross-sectional data and multi-cohort panel data. Package <b>APCI</b> also provides a set of functions for visualizing the data and modeling results. We demonstrate the usage of package <b>APCI</b> with empirical data from the Current Population Survey. We show that package <b>APCI</b> provides useful visualization and analytical tools for understanding age, period, and cohort trends in various types of outcomes.</p>\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"14 2\",\"pages\":\"77-95\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237519/pdf/nihms-1897512.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2022-026\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32614/rj-2022-026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

社会科学家经常试图评估年龄、时期和队列变量对结果总体趋势的相对贡献。我们开发了一个 R 软件包 APCI(和 Stata 命令 apci),用于实现年龄-时期-队列-互动(APC-I)模型,以估计和检验集合横截面数据和多队列面板数据中各类结果的年龄、时期和队列模式。软件包 APCI 还提供了一组用于可视化数据和建模结果的函数。我们用当前人口调查的经验数据演示了软件包 APCI 的用法。我们表明,软件包 APCI 为了解各类结果的年龄、时期和队列趋势提供了有用的可视化和分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APCI: An R and Stata Package for Visualizing and Analyzing Age-Period-Cohort Data.

Social scientists have frequently attempted to assess the relative contribution of age, period, and cohort variables to the overall trend in an outcome. We develop an R package APCI (and Stata command apci) to implement the age-period-cohort-interaction (APC-I) model for estimating and testing age, period, and cohort patterns in various types of outcomes for pooled cross-sectional data and multi-cohort panel data. Package APCI also provides a set of functions for visualizing the data and modeling results. We demonstrate the usage of package APCI with empirical data from the Current Population Survey. We show that package APCI provides useful visualization and analytical tools for understanding age, period, and cohort trends in various types of outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1