Huan Zhang , Jun Kang , Wuyan Guo , Fujie Wang , Mengjiao Guo , Shanshan Feng , Wuai Zhou , Jinnan Li , Ayesha T. Tahir , Shaoshan Wang , Xinjun Du , Hui Zhao , Weihua Wang , Hong Zhu , Bo Zhang
{"title":"一种最佳的药用和食用中药配方,通过其抗氧化、抗炎和抗细胞凋亡的活性来减轻颗粒物引起的肺损伤","authors":"Huan Zhang , Jun Kang , Wuyan Guo , Fujie Wang , Mengjiao Guo , Shanshan Feng , Wuai Zhou , Jinnan Li , Ayesha T. Tahir , Shaoshan Wang , Xinjun Du , Hui Zhao , Weihua Wang , Hong Zhu , Bo Zhang","doi":"10.1016/j.chmed.2022.08.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Identifying novel strategies to prevent particulate matter (PM)-induced lung injury is crucial for the reduction of the morbidity of chronic respiratory diseases. The combined intervention represented by herbal formulae for simultaneously targeting multiple pathological processes can provide a more beneficial effect than the single intervention. The aim of this paper is therefore to design a safe and effective medicinal and edible Chinese herbs (MECHs) formula against PM-induced lung injury.</p></div><div><h3>Methods</h3><p>PM-induced oxidative stress, inflammatory response and apoptosis A549 cell model were used to screen anti-oxidant, anti-inflammatory and anti-apoptotic MECHs, respectively. A network pharmacology method was utilized to rationally design a novel herbal formula. Ultra performance liquid chromatography-mass spectrometer was utilized to assess the quality control of MECHs formula. The excretion of magnetic iron oxide nanospheres of the MECHs formula was estimated in zebrafish. The MECH formula against PM-induced lung injury was investigated with mice experiments.</p></div><div><h3>Results</h3><p>Five selected herbs were rationally designed to form a new MECH formula, including <em>Citri Exocarpium Rubrum</em> (Juhong), <em>Lablab Semen Album</em> (Baibiandou), <em>Atractylodis Macrocephalae Rhizoma</em> (Baizhu), <em>Mori Folium</em> (Sangye) and <em>Polygonati Odorati Rhizoma</em> (Yuzhu). The formula effectively promoted the magnetic iron oxide nanospheres excretion in zebrafish. The mid/high dose formula significantly prevented PM-induced lung damage in mice by enhancing the activity of SOD and GSH-Px, reducing the MDA and ROS level and attenuating the upregulation of pro-inflammatory cytokine (IL-6, IL-8, IL-1β and TNF-α), down regulating the protein expression of NF-κB, STAT3 and Caspase-3.</p></div><div><h3>Conclusion</h3><p>Our findings suggest that the effective MECHs formula will become a novel strategy for preventing PM-induced lung injury and provide a paradigm for the development of functional foods using MECHs.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394350/pdf/","citationCount":"1","resultStr":"{\"title\":\"An optimal medicinal and edible Chinese herbal formula attenuates particulate matter-induced lung injury through its anti-oxidative, anti-inflammatory and anti-apoptosis activities\",\"authors\":\"Huan Zhang , Jun Kang , Wuyan Guo , Fujie Wang , Mengjiao Guo , Shanshan Feng , Wuai Zhou , Jinnan Li , Ayesha T. Tahir , Shaoshan Wang , Xinjun Du , Hui Zhao , Weihua Wang , Hong Zhu , Bo Zhang\",\"doi\":\"10.1016/j.chmed.2022.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Identifying novel strategies to prevent particulate matter (PM)-induced lung injury is crucial for the reduction of the morbidity of chronic respiratory diseases. The combined intervention represented by herbal formulae for simultaneously targeting multiple pathological processes can provide a more beneficial effect than the single intervention. The aim of this paper is therefore to design a safe and effective medicinal and edible Chinese herbs (MECHs) formula against PM-induced lung injury.</p></div><div><h3>Methods</h3><p>PM-induced oxidative stress, inflammatory response and apoptosis A549 cell model were used to screen anti-oxidant, anti-inflammatory and anti-apoptotic MECHs, respectively. A network pharmacology method was utilized to rationally design a novel herbal formula. Ultra performance liquid chromatography-mass spectrometer was utilized to assess the quality control of MECHs formula. The excretion of magnetic iron oxide nanospheres of the MECHs formula was estimated in zebrafish. The MECH formula against PM-induced lung injury was investigated with mice experiments.</p></div><div><h3>Results</h3><p>Five selected herbs were rationally designed to form a new MECH formula, including <em>Citri Exocarpium Rubrum</em> (Juhong), <em>Lablab Semen Album</em> (Baibiandou), <em>Atractylodis Macrocephalae Rhizoma</em> (Baizhu), <em>Mori Folium</em> (Sangye) and <em>Polygonati Odorati Rhizoma</em> (Yuzhu). The formula effectively promoted the magnetic iron oxide nanospheres excretion in zebrafish. The mid/high dose formula significantly prevented PM-induced lung damage in mice by enhancing the activity of SOD and GSH-Px, reducing the MDA and ROS level and attenuating the upregulation of pro-inflammatory cytokine (IL-6, IL-8, IL-1β and TNF-α), down regulating the protein expression of NF-κB, STAT3 and Caspase-3.</p></div><div><h3>Conclusion</h3><p>Our findings suggest that the effective MECHs formula will become a novel strategy for preventing PM-induced lung injury and provide a paradigm for the development of functional foods using MECHs.</p></div>\",\"PeriodicalId\":9916,\"journal\":{\"name\":\"Chinese Herbal Medicines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10394350/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Herbal Medicines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674638422001113\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638422001113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
An optimal medicinal and edible Chinese herbal formula attenuates particulate matter-induced lung injury through its anti-oxidative, anti-inflammatory and anti-apoptosis activities
Objective
Identifying novel strategies to prevent particulate matter (PM)-induced lung injury is crucial for the reduction of the morbidity of chronic respiratory diseases. The combined intervention represented by herbal formulae for simultaneously targeting multiple pathological processes can provide a more beneficial effect than the single intervention. The aim of this paper is therefore to design a safe and effective medicinal and edible Chinese herbs (MECHs) formula against PM-induced lung injury.
Methods
PM-induced oxidative stress, inflammatory response and apoptosis A549 cell model were used to screen anti-oxidant, anti-inflammatory and anti-apoptotic MECHs, respectively. A network pharmacology method was utilized to rationally design a novel herbal formula. Ultra performance liquid chromatography-mass spectrometer was utilized to assess the quality control of MECHs formula. The excretion of magnetic iron oxide nanospheres of the MECHs formula was estimated in zebrafish. The MECH formula against PM-induced lung injury was investigated with mice experiments.
Results
Five selected herbs were rationally designed to form a new MECH formula, including Citri Exocarpium Rubrum (Juhong), Lablab Semen Album (Baibiandou), Atractylodis Macrocephalae Rhizoma (Baizhu), Mori Folium (Sangye) and Polygonati Odorati Rhizoma (Yuzhu). The formula effectively promoted the magnetic iron oxide nanospheres excretion in zebrafish. The mid/high dose formula significantly prevented PM-induced lung damage in mice by enhancing the activity of SOD and GSH-Px, reducing the MDA and ROS level and attenuating the upregulation of pro-inflammatory cytokine (IL-6, IL-8, IL-1β and TNF-α), down regulating the protein expression of NF-κB, STAT3 and Caspase-3.
Conclusion
Our findings suggest that the effective MECHs formula will become a novel strategy for preventing PM-induced lung injury and provide a paradigm for the development of functional foods using MECHs.