Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha
{"title":"含协变量的多水平潜在类分析的两步估计。","authors":"Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha","doi":"10.1007/s11336-023-09929-2","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1144-1170"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656341/pdf/","citationCount":"0","resultStr":"{\"title\":\"A two-step estimator for multilevel latent class analysis with covariates.\",\"authors\":\"Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha\",\"doi\":\"10.1007/s11336-023-09929-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1144-1170\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09929-2\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09929-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A two-step estimator for multilevel latent class analysis with covariates.
We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.