基于多模态数据的心肌病诊断方法。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-08-28 DOI:10.1515/bmt-2023-0099
Linshan Shen, Xuwei Zhang, Shaobin Huang, Bing Wu, Jingjie Li
{"title":"基于多模态数据的心肌病诊断方法。","authors":"Linshan Shen,&nbsp;Xuwei Zhang,&nbsp;Shaobin Huang,&nbsp;Bing Wu,&nbsp;Jingjie Li","doi":"10.1515/bmt-2023-0099","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Currently, a multitude of machine learning techniques are available for the diagnosis of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) by utilizing electrocardiography (ECG) data. However, these methods rely on digital versions of ECG data, while in practice, numerous ECG data still exist in paper form. As a result, the accuracy of the existing machine learning diagnostic models is suboptimal in practical scenarios. In order to enhance the accuracy of machine learning models for diagnosing cardiomyopathy, we propose a multimodal machine learning model capable of diagnosing both HCM and DCM.</p><p><strong>Methods: </strong>Our study employed an artificial neural network (ANN) for feature extraction from both the echocardiogram report form and biochemical examination data. Furthermore, a convolutional neural network (CNN) was utilized for feature extraction from the electrocardiogram (ECG). The resulting extracted features were subsequently integrated and inputted into a multilayer perceptron (MLP) for diagnostic classification.</p><p><strong>Results: </strong>Our multimodal fusion model achieved a precision of 89.87%, recall of 91.20%, F1 score of 89.13%, and precision of 89.72%.</p><p><strong>Conclusions: </strong>Compared to existing machine learning models, our proposed multimodal fusion model has achieved superior results in various performance metrics. We believe that our method is effective.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diagnostic method for cardiomyopathy based on multimodal data.\",\"authors\":\"Linshan Shen,&nbsp;Xuwei Zhang,&nbsp;Shaobin Huang,&nbsp;Bing Wu,&nbsp;Jingjie Li\",\"doi\":\"10.1515/bmt-2023-0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Currently, a multitude of machine learning techniques are available for the diagnosis of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) by utilizing electrocardiography (ECG) data. However, these methods rely on digital versions of ECG data, while in practice, numerous ECG data still exist in paper form. As a result, the accuracy of the existing machine learning diagnostic models is suboptimal in practical scenarios. In order to enhance the accuracy of machine learning models for diagnosing cardiomyopathy, we propose a multimodal machine learning model capable of diagnosing both HCM and DCM.</p><p><strong>Methods: </strong>Our study employed an artificial neural network (ANN) for feature extraction from both the echocardiogram report form and biochemical examination data. Furthermore, a convolutional neural network (CNN) was utilized for feature extraction from the electrocardiogram (ECG). The resulting extracted features were subsequently integrated and inputted into a multilayer perceptron (MLP) for diagnostic classification.</p><p><strong>Results: </strong>Our multimodal fusion model achieved a precision of 89.87%, recall of 91.20%, F1 score of 89.13%, and precision of 89.72%.</p><p><strong>Conclusions: </strong>Compared to existing machine learning models, our proposed multimodal fusion model has achieved superior results in various performance metrics. We believe that our method is effective.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2023-0099\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2023-0099","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:目前,许多机器学习技术可用于利用心电图(ECG)数据诊断肥厚型心肌病(HCM)和扩张型心肌病(DCM)。然而,这些方法依赖于心电数据的数字版本,而在实践中,许多心电数据仍然以纸质形式存在。因此,现有的机器学习诊断模型在实际场景中的准确性是次优的。为了提高机器学习模型诊断心肌病的准确性,我们提出了一种能够诊断HCM和DCM的多模态机器学习模型。方法:采用人工神经网络(ANN)对超声心动图报表和生化检查数据进行特征提取。此外,利用卷积神经网络(CNN)对心电图(ECG)进行特征提取。结果提取的特征随后被整合并输入到多层感知器(MLP)中进行诊断分类。结果:多模态融合模型的准确率为89.87%,召回率为91.20%,F1评分为89.13%,准确率为89.72%。结论:与现有的机器学习模型相比,我们提出的多模态融合模型在各种性能指标上取得了更好的结果。我们相信我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A diagnostic method for cardiomyopathy based on multimodal data.

Objectives: Currently, a multitude of machine learning techniques are available for the diagnosis of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) by utilizing electrocardiography (ECG) data. However, these methods rely on digital versions of ECG data, while in practice, numerous ECG data still exist in paper form. As a result, the accuracy of the existing machine learning diagnostic models is suboptimal in practical scenarios. In order to enhance the accuracy of machine learning models for diagnosing cardiomyopathy, we propose a multimodal machine learning model capable of diagnosing both HCM and DCM.

Methods: Our study employed an artificial neural network (ANN) for feature extraction from both the echocardiogram report form and biochemical examination data. Furthermore, a convolutional neural network (CNN) was utilized for feature extraction from the electrocardiogram (ECG). The resulting extracted features were subsequently integrated and inputted into a multilayer perceptron (MLP) for diagnostic classification.

Results: Our multimodal fusion model achieved a precision of 89.87%, recall of 91.20%, F1 score of 89.13%, and precision of 89.72%.

Conclusions: Compared to existing machine learning models, our proposed multimodal fusion model has achieved superior results in various performance metrics. We believe that our method is effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1