Simei Go, Hang Lam Li, Jung-Chin Chang, Arthur J Verhoeven, Ronald P J Oude Elferink
{"title":"胆管细胞表达一种可溶性腺苷酸环化酶的异构体,该酶被n链糖基化并在细胞外囊泡中分泌。","authors":"Simei Go, Hang Lam Li, Jung-Chin Chang, Arthur J Verhoeven, Ronald P J Oude Elferink","doi":"10.1111/tra.12904","DOIUrl":null,"url":null,"abstract":"<p><p>Soluble adenylyl cyclase (sAC)-derived cAMP regulates various cellular processes; however, the regulatory landscape mediating sAC protein levels remains underexplored. We consistently observed a 85 kD (sAC<sub>85</sub> ) or 75 kD (sAC<sub>75</sub> ) sAC protein band under glucose-sufficient or glucose-deprived states, respectively, in H69 cholangiocytes by immunoblotting. Deglycosylation by PNGase-F demonstrated that both sAC<sub>75</sub> and sAC<sub>85</sub> are N-linked glycosylated proteins with the same polypeptide backbone. Deglycosylation with Endo-H further revealed that sAC<sub>75</sub> and sAC<sub>85</sub> carry distinct sugar chains. We observed release of N-linked glycosylated sAC (sAC<sub>EV</sub> ) in extracellular vesicles under conditions that support intracellular sAC<sub>85</sub> (glucose-sufficient) as opposed to sAC<sub>75</sub> (glucose-deprived) conditions. Consistently, disrupting the vesicular machinery affects the maturation of intracellular sAC and inhibits the release of sAC<sub>EV</sub> into extracellular vesicles. The intracellular turnover of sAC<sub>85</sub> is extremely short (t<sub>1/2</sub> ~30 min) and release of sAC<sub>EV</sub> in the medium was detected within 3 h. Our observations support the maturation and trafficking in cholangiocytes of an N-linked glycosylated sAC isoform that is rapidly released into extracellular vesicles.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cholangiocytes express an isoform of soluble adenylyl cyclase that is N-linked glycosylated and secreted in extracellular vesicles.\",\"authors\":\"Simei Go, Hang Lam Li, Jung-Chin Chang, Arthur J Verhoeven, Ronald P J Oude Elferink\",\"doi\":\"10.1111/tra.12904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soluble adenylyl cyclase (sAC)-derived cAMP regulates various cellular processes; however, the regulatory landscape mediating sAC protein levels remains underexplored. We consistently observed a 85 kD (sAC<sub>85</sub> ) or 75 kD (sAC<sub>75</sub> ) sAC protein band under glucose-sufficient or glucose-deprived states, respectively, in H69 cholangiocytes by immunoblotting. Deglycosylation by PNGase-F demonstrated that both sAC<sub>75</sub> and sAC<sub>85</sub> are N-linked glycosylated proteins with the same polypeptide backbone. Deglycosylation with Endo-H further revealed that sAC<sub>75</sub> and sAC<sub>85</sub> carry distinct sugar chains. We observed release of N-linked glycosylated sAC (sAC<sub>EV</sub> ) in extracellular vesicles under conditions that support intracellular sAC<sub>85</sub> (glucose-sufficient) as opposed to sAC<sub>75</sub> (glucose-deprived) conditions. Consistently, disrupting the vesicular machinery affects the maturation of intracellular sAC and inhibits the release of sAC<sub>EV</sub> into extracellular vesicles. The intracellular turnover of sAC<sub>85</sub> is extremely short (t<sub>1/2</sub> ~30 min) and release of sAC<sub>EV</sub> in the medium was detected within 3 h. Our observations support the maturation and trafficking in cholangiocytes of an N-linked glycosylated sAC isoform that is rapidly released into extracellular vesicles.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12904\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12904","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cholangiocytes express an isoform of soluble adenylyl cyclase that is N-linked glycosylated and secreted in extracellular vesicles.
Soluble adenylyl cyclase (sAC)-derived cAMP regulates various cellular processes; however, the regulatory landscape mediating sAC protein levels remains underexplored. We consistently observed a 85 kD (sAC85 ) or 75 kD (sAC75 ) sAC protein band under glucose-sufficient or glucose-deprived states, respectively, in H69 cholangiocytes by immunoblotting. Deglycosylation by PNGase-F demonstrated that both sAC75 and sAC85 are N-linked glycosylated proteins with the same polypeptide backbone. Deglycosylation with Endo-H further revealed that sAC75 and sAC85 carry distinct sugar chains. We observed release of N-linked glycosylated sAC (sACEV ) in extracellular vesicles under conditions that support intracellular sAC85 (glucose-sufficient) as opposed to sAC75 (glucose-deprived) conditions. Consistently, disrupting the vesicular machinery affects the maturation of intracellular sAC and inhibits the release of sACEV into extracellular vesicles. The intracellular turnover of sAC85 is extremely short (t1/2 ~30 min) and release of sACEV in the medium was detected within 3 h. Our observations support the maturation and trafficking in cholangiocytes of an N-linked glycosylated sAC isoform that is rapidly released into extracellular vesicles.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.