Sinan Wang, Hongying Chen, Jinyi Huang, Sisi Shen, Zhengya Tang, Xiaoyan Tan, Dong Lei, Guangdong Zhou
{"title":"明胶改性3D打印PGS弹性分层多孔软骨再生支架。","authors":"Sinan Wang, Hongying Chen, Jinyi Huang, Sisi Shen, Zhengya Tang, Xiaoyan Tan, Dong Lei, Guangdong Zhou","doi":"10.1063/5.0152151","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative cartilage replacements are increasingly required in clinical settings for various defect repairs, including bronchial cartilage deficiency, articular cartilage injury, and microtia reconstruction. Poly (glycerol sebacate) (PGS) is a widely used bioelastomer that has been developed for various regenerative medicine applications because of its excellent elasticity, biodegradability, and biocompatibility. However, because of inadequate active groups, strong hydrophobicity, and limited ink extrusion accuracy, 3D printed PGS scaffolds may cause insufficient bioactivity, inefficient cell inoculation, and inconsistent cellular composition, which seriously hinders its further cartilage regenerative application. Here, we combined 3D printed PGS frameworks with an encapsulated gelatin hydrogel to fabricate a PGS@Gel composite scaffold. PGS@Gel scaffolds have a controllable porous microstructure, with suitable pore sizes and enhanced hydrophilia, which could significantly promote the cells' penetration and adhesion for efficient chondrocyte inoculation. Furthermore, the outstanding elasticity and fatigue durability of the PGS framework enabled the regenerated cartilage built by the PGS@Gel scaffolds to resist the dynamic <i>in vivo</i> environment and maintain its original morphology. Importantly, PGS@Gel scaffolds increased the rate of cartilage regeneration concurrent with scaffold degradation. The scaffold was gradually degraded and integrated to form uniform, dense, and mature regenerated cartilage tissue with little scaffold residue.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"7 3","pages":"036105"},"PeriodicalIF":6.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404141/pdf/","citationCount":"1","resultStr":"{\"title\":\"Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration.\",\"authors\":\"Sinan Wang, Hongying Chen, Jinyi Huang, Sisi Shen, Zhengya Tang, Xiaoyan Tan, Dong Lei, Guangdong Zhou\",\"doi\":\"10.1063/5.0152151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative cartilage replacements are increasingly required in clinical settings for various defect repairs, including bronchial cartilage deficiency, articular cartilage injury, and microtia reconstruction. Poly (glycerol sebacate) (PGS) is a widely used bioelastomer that has been developed for various regenerative medicine applications because of its excellent elasticity, biodegradability, and biocompatibility. However, because of inadequate active groups, strong hydrophobicity, and limited ink extrusion accuracy, 3D printed PGS scaffolds may cause insufficient bioactivity, inefficient cell inoculation, and inconsistent cellular composition, which seriously hinders its further cartilage regenerative application. Here, we combined 3D printed PGS frameworks with an encapsulated gelatin hydrogel to fabricate a PGS@Gel composite scaffold. PGS@Gel scaffolds have a controllable porous microstructure, with suitable pore sizes and enhanced hydrophilia, which could significantly promote the cells' penetration and adhesion for efficient chondrocyte inoculation. Furthermore, the outstanding elasticity and fatigue durability of the PGS framework enabled the regenerated cartilage built by the PGS@Gel scaffolds to resist the dynamic <i>in vivo</i> environment and maintain its original morphology. Importantly, PGS@Gel scaffolds increased the rate of cartilage regeneration concurrent with scaffold degradation. The scaffold was gradually degraded and integrated to form uniform, dense, and mature regenerated cartilage tissue with little scaffold residue.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"7 3\",\"pages\":\"036105\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404141/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0152151\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0152151","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Gelatin-modified 3D printed PGS elastic hierarchical porous scaffold for cartilage regeneration.
Regenerative cartilage replacements are increasingly required in clinical settings for various defect repairs, including bronchial cartilage deficiency, articular cartilage injury, and microtia reconstruction. Poly (glycerol sebacate) (PGS) is a widely used bioelastomer that has been developed for various regenerative medicine applications because of its excellent elasticity, biodegradability, and biocompatibility. However, because of inadequate active groups, strong hydrophobicity, and limited ink extrusion accuracy, 3D printed PGS scaffolds may cause insufficient bioactivity, inefficient cell inoculation, and inconsistent cellular composition, which seriously hinders its further cartilage regenerative application. Here, we combined 3D printed PGS frameworks with an encapsulated gelatin hydrogel to fabricate a PGS@Gel composite scaffold. PGS@Gel scaffolds have a controllable porous microstructure, with suitable pore sizes and enhanced hydrophilia, which could significantly promote the cells' penetration and adhesion for efficient chondrocyte inoculation. Furthermore, the outstanding elasticity and fatigue durability of the PGS framework enabled the regenerated cartilage built by the PGS@Gel scaffolds to resist the dynamic in vivo environment and maintain its original morphology. Importantly, PGS@Gel scaffolds increased the rate of cartilage regeneration concurrent with scaffold degradation. The scaffold was gradually degraded and integrated to form uniform, dense, and mature regenerated cartilage tissue with little scaffold residue.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology