一种集成双微针的阻抗流式细胞仪,用于单细胞的电学特性表征。

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Artificial Cells, Nanomedicine, and Biotechnology Pub Date : 2023-12-01 DOI:10.1080/21691401.2023.2239274
Muhammad Asraf Mansor, Mohd Ridzuan Ahmad, Michal Petrů, Seyed Saeid Rahimian Koloor
{"title":"一种集成双微针的阻抗流式细胞仪,用于单细胞的电学特性表征。","authors":"Muhammad Asraf Mansor, Mohd Ridzuan Ahmad, Michal Petrů, Seyed Saeid Rahimian Koloor","doi":"10.1080/21691401.2023.2239274","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m<sup>-2</sup>, with the regression coefficients, <math><mi>ρ</mi></math> at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"371-383"},"PeriodicalIF":4.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.\",\"authors\":\"Muhammad Asraf Mansor, Mohd Ridzuan Ahmad, Michal Petrů, Seyed Saeid Rahimian Koloor\",\"doi\":\"10.1080/21691401.2023.2239274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m<sup>-2</sup>, with the regression coefficients, <math><mi>ρ</mi></math> at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"51 1\",\"pages\":\"371-383\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2023.2239274\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2023.2239274","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活细胞的电学特性已被证明可以揭示其内部结构、电荷分布和细胞膜组成变化以及细胞外环境的重要细节。阻抗流式细胞术是测定细胞电学性质的常用方法,具有无标记和高通量的优点。然而,当前的技术对于制造工艺来说是复杂且昂贵的。因此,我们引入了一种用于单细胞检测和电特性提取的集成双微针微通道。双微针使用市售的涂有聚对二甲苯的钨针。当单个细胞流过双微针的平行电极配置时,测量多个频率下的电阻抗。阻抗测量证明了正常红细胞(RBCs)与三种不同大小的微珠在低频和高频下的差异,100 kHz和2 MHz。使用电等效电路模型(ECM)来确定单个电池的独特膜电容。所提出的技术表明,RBC的比膜电容为9.42mF/m-2,回归系数ρ为0.9895。因此,这种设备可能在发展中国家用于低成本的单细胞筛查和检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.

Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
期刊最新文献
Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. HBOC alleviated tumour hypoxia during radiotherapy more intensely in large solid tumours than regular ones. Inhibitory effects of Curcumae Radix carbonisata-based carbon dots against liver fibrosis induced by carbon tetrachloride in mice. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. Investigation of pharmacokinetics and immunogenicity of magnetosomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1