Cheng-Yu Li, Helena Boldt, Emily Parent, Jax Ficklin, Althea James, Troy J. Anlage, Lena M. Boyer, Brianna R. Pierce, Kellee R. Siegfried, Matthew P. Harris, Eric S. Haag
{"title":"研究红树林鳉鱼(Kryptolebias marmoratus)的遗传工具--红树林鳉鱼是表型可塑性的新兴脊椎动物模型","authors":"Cheng-Yu Li, Helena Boldt, Emily Parent, Jax Ficklin, Althea James, Troy J. Anlage, Lena M. Boyer, Brianna R. Pierce, Kellee R. Siegfried, Matthew P. Harris, Eric S. Haag","doi":"10.1002/jez.b.23216","DOIUrl":null,"url":null,"abstract":"<p><i>Kryptolebias marmoratus</i> (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic—varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, <i>K. hermaphroditus</i>, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant <i>kissylips</i> lays embryos at twice the rate of wild-type. Combining frequent egg collection with the <i>kissylips</i> mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous <i>tyrosinase</i> gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 3","pages":"164-177"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23216","citationCount":"0","resultStr":"{\"title\":\"Genetic tools for the study of the mangrove killifish, Kryptolebias marmoratus, an emerging vertebrate model for phenotypic plasticity\",\"authors\":\"Cheng-Yu Li, Helena Boldt, Emily Parent, Jax Ficklin, Althea James, Troy J. Anlage, Lena M. Boyer, Brianna R. Pierce, Kellee R. Siegfried, Matthew P. Harris, Eric S. Haag\",\"doi\":\"10.1002/jez.b.23216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Kryptolebias marmoratus</i> (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic—varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, <i>K. hermaphroditus</i>, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant <i>kissylips</i> lays embryos at twice the rate of wild-type. Combining frequent egg collection with the <i>kissylips</i> mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous <i>tyrosinase</i> gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 3\",\"pages\":\"164-177\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23216\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23216\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23216","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Genetic tools for the study of the mangrove killifish, Kryptolebias marmoratus, an emerging vertebrate model for phenotypic plasticity
Kryptolebias marmoratus (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic—varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, K. hermaphroditus, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant kissylips lays embryos at twice the rate of wild-type. Combining frequent egg collection with the kissylips mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous tyrosinase gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.