{"title":"生境异质性、环境反馈与物种共存。","authors":"Zachary R Miller, Stefano Allesina","doi":"10.1086/724821","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractClassic ecological theory explains species coexistence in variable environments. While spatial variation is often treated as an intrinsic feature of a landscape, it may be shaped and even generated by the resident community. All species modify their local environment to some extent, driving changes that can feed back to affect the composition and coexistence of the community, potentially over timescales very different from population dynamics. We introduce a simple nested modeling framework for community dynamics in heterogeneous environments, including the possible evolution of heterogeneity over time due to community-environment feedbacks. We use this model to derive analytical conditions for species coexistence in environments where heterogeneity is either fixed or shaped by feedbacks. Among other results, our approach reveals how dispersal and environmental specialization interact to shape realized patterns of habitat association and demonstrates that environmental feedbacks can tune landscape conditions to allow the stable coexistence of any number of species. Our flexible modeling framework helps explain feedback dynamics that arise in a wide range of ecosystems and offers a generic platform for exploring the interplay between species and landscape diversity.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 2","pages":"E53-E64"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Habitat Heterogeneity, Environmental Feedbacks, and Species Coexistence across Timescales.\",\"authors\":\"Zachary R Miller, Stefano Allesina\",\"doi\":\"10.1086/724821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractClassic ecological theory explains species coexistence in variable environments. While spatial variation is often treated as an intrinsic feature of a landscape, it may be shaped and even generated by the resident community. All species modify their local environment to some extent, driving changes that can feed back to affect the composition and coexistence of the community, potentially over timescales very different from population dynamics. We introduce a simple nested modeling framework for community dynamics in heterogeneous environments, including the possible evolution of heterogeneity over time due to community-environment feedbacks. We use this model to derive analytical conditions for species coexistence in environments where heterogeneity is either fixed or shaped by feedbacks. Among other results, our approach reveals how dispersal and environmental specialization interact to shape realized patterns of habitat association and demonstrates that environmental feedbacks can tune landscape conditions to allow the stable coexistence of any number of species. Our flexible modeling framework helps explain feedback dynamics that arise in a wide range of ecosystems and offers a generic platform for exploring the interplay between species and landscape diversity.</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"202 2\",\"pages\":\"E53-E64\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/724821\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/724821","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Habitat Heterogeneity, Environmental Feedbacks, and Species Coexistence across Timescales.
AbstractClassic ecological theory explains species coexistence in variable environments. While spatial variation is often treated as an intrinsic feature of a landscape, it may be shaped and even generated by the resident community. All species modify their local environment to some extent, driving changes that can feed back to affect the composition and coexistence of the community, potentially over timescales very different from population dynamics. We introduce a simple nested modeling framework for community dynamics in heterogeneous environments, including the possible evolution of heterogeneity over time due to community-environment feedbacks. We use this model to derive analytical conditions for species coexistence in environments where heterogeneity is either fixed or shaped by feedbacks. Among other results, our approach reveals how dispersal and environmental specialization interact to shape realized patterns of habitat association and demonstrates that environmental feedbacks can tune landscape conditions to allow the stable coexistence of any number of species. Our flexible modeling framework helps explain feedback dynamics that arise in a wide range of ecosystems and offers a generic platform for exploring the interplay between species and landscape diversity.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.