Miriam Brinberg, Graham D Bodie, Denise H Solomon, Susanne M Jones, Nilam Ram
{"title":"在相互作用行为如何随时间变化中检查个体差异:一种二元多项式逻辑增长建模方法。","authors":"Miriam Brinberg, Graham D Bodie, Denise H Solomon, Susanne M Jones, Nilam Ram","doi":"10.1037/met0000605","DOIUrl":null,"url":null,"abstract":"<p><p>Several theoretical perspectives suggest that dyadic experiences are distinguished by patterns of behavioral change that emerge during interactions. Methods for examining change in behavior over time are well elaborated for the study of change along continuous dimensions. Extensions for charting increases and decreases in individuals' use of specific, categorically defined behaviors, however, are rarely invoked. Greater accessibility of Bayesian frameworks that facilitate formulation and estimation of the requisite models is opening new possibilities. This article provides a primer on how multinomial logistic growth models can be used to examine between-dyad differences in within-dyad behavioral change over the course of an interaction. We describe and illustrate how these models are implemented in the Bayesian framework using data from support conversations between strangers (<i>N</i> = 118 dyads) to examine (RQ1) how six types of listeners' and disclosers' behaviors change as support conversations unfold and (RQ2) how the disclosers' preconversation distress moderates the change in conversation behaviors. The primer concludes with a series of notes on (a) implications of modeling choices, (b) flexibility in modeling nonlinear change, (c) necessity for theory that specifies how and why change trajectories differ, and (d) how multinomial logistic growth models can help refine current theory about dyadic interaction. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examining individual differences in how interaction behaviors change over time: A dyadic multinomial logistic growth modeling approach.\",\"authors\":\"Miriam Brinberg, Graham D Bodie, Denise H Solomon, Susanne M Jones, Nilam Ram\",\"doi\":\"10.1037/met0000605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several theoretical perspectives suggest that dyadic experiences are distinguished by patterns of behavioral change that emerge during interactions. Methods for examining change in behavior over time are well elaborated for the study of change along continuous dimensions. Extensions for charting increases and decreases in individuals' use of specific, categorically defined behaviors, however, are rarely invoked. Greater accessibility of Bayesian frameworks that facilitate formulation and estimation of the requisite models is opening new possibilities. This article provides a primer on how multinomial logistic growth models can be used to examine between-dyad differences in within-dyad behavioral change over the course of an interaction. We describe and illustrate how these models are implemented in the Bayesian framework using data from support conversations between strangers (<i>N</i> = 118 dyads) to examine (RQ1) how six types of listeners' and disclosers' behaviors change as support conversations unfold and (RQ2) how the disclosers' preconversation distress moderates the change in conversation behaviors. The primer concludes with a series of notes on (a) implications of modeling choices, (b) flexibility in modeling nonlinear change, (c) necessity for theory that specifies how and why change trajectories differ, and (d) how multinomial logistic growth models can help refine current theory about dyadic interaction. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000605\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000605","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
Examining individual differences in how interaction behaviors change over time: A dyadic multinomial logistic growth modeling approach.
Several theoretical perspectives suggest that dyadic experiences are distinguished by patterns of behavioral change that emerge during interactions. Methods for examining change in behavior over time are well elaborated for the study of change along continuous dimensions. Extensions for charting increases and decreases in individuals' use of specific, categorically defined behaviors, however, are rarely invoked. Greater accessibility of Bayesian frameworks that facilitate formulation and estimation of the requisite models is opening new possibilities. This article provides a primer on how multinomial logistic growth models can be used to examine between-dyad differences in within-dyad behavioral change over the course of an interaction. We describe and illustrate how these models are implemented in the Bayesian framework using data from support conversations between strangers (N = 118 dyads) to examine (RQ1) how six types of listeners' and disclosers' behaviors change as support conversations unfold and (RQ2) how the disclosers' preconversation distress moderates the change in conversation behaviors. The primer concludes with a series of notes on (a) implications of modeling choices, (b) flexibility in modeling nonlinear change, (c) necessity for theory that specifies how and why change trajectories differ, and (d) how multinomial logistic growth models can help refine current theory about dyadic interaction. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.