Felipe Orozco, Diana Horvat, Matteo Miola, Ignacio Moreno-Villoslada, Francesco Picchioni, Ranjita K Bose
{"title":"具有自愈功能的电活性热气动软执行器:一个关键的评估。","authors":"Felipe Orozco, Diana Horvat, Matteo Miola, Ignacio Moreno-Villoslada, Francesco Picchioni, Ranjita K Bose","doi":"10.1089/soro.2022.0170","DOIUrl":null,"url":null,"abstract":"<p><p>Soft actuators that operate with overpressure have been successfully implemented as soft robotic grippers. Naturally, as these pneumatic devices are prone to cuts, self-healing properties are attractive. Here, we prepared a gripper that operates based on the liquid-gas phase transition of ethanol within its hollow structure. The gripping surface of the device is coated with a self-healing polymer that heals with heat. This gripper also includes a stainless steel wire along the device that heats the entire structure through resistive heating. This design results in a soft robotic gripper that actuates and heals in parallel driven by the same practical stimulus, that is, electricity. Compared to other self-healing soft grippers, this approach has the advantage of being simple and having autonomous self-healing. However, there remain fundamental drawbacks that limit its implementation. The current work critically assesses this overpressure approach and concludes with a broad perspective regarding self-healing soft robotic grippers.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 4","pages":"852-859"},"PeriodicalIF":6.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electroactive Thermo-Pneumatic Soft Actuator with Self-Healing Features: A Critical Evaluation.\",\"authors\":\"Felipe Orozco, Diana Horvat, Matteo Miola, Ignacio Moreno-Villoslada, Francesco Picchioni, Ranjita K Bose\",\"doi\":\"10.1089/soro.2022.0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soft actuators that operate with overpressure have been successfully implemented as soft robotic grippers. Naturally, as these pneumatic devices are prone to cuts, self-healing properties are attractive. Here, we prepared a gripper that operates based on the liquid-gas phase transition of ethanol within its hollow structure. The gripping surface of the device is coated with a self-healing polymer that heals with heat. This gripper also includes a stainless steel wire along the device that heats the entire structure through resistive heating. This design results in a soft robotic gripper that actuates and heals in parallel driven by the same practical stimulus, that is, electricity. Compared to other self-healing soft grippers, this approach has the advantage of being simple and having autonomous self-healing. However, there remain fundamental drawbacks that limit its implementation. The current work critically assesses this overpressure approach and concludes with a broad perspective regarding self-healing soft robotic grippers.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"10 4\",\"pages\":\"852-859\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0170\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0170","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Electroactive Thermo-Pneumatic Soft Actuator with Self-Healing Features: A Critical Evaluation.
Soft actuators that operate with overpressure have been successfully implemented as soft robotic grippers. Naturally, as these pneumatic devices are prone to cuts, self-healing properties are attractive. Here, we prepared a gripper that operates based on the liquid-gas phase transition of ethanol within its hollow structure. The gripping surface of the device is coated with a self-healing polymer that heals with heat. This gripper also includes a stainless steel wire along the device that heats the entire structure through resistive heating. This design results in a soft robotic gripper that actuates and heals in parallel driven by the same practical stimulus, that is, electricity. Compared to other self-healing soft grippers, this approach has the advantage of being simple and having autonomous self-healing. However, there remain fundamental drawbacks that limit its implementation. The current work critically assesses this overpressure approach and concludes with a broad perspective regarding self-healing soft robotic grippers.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.