Nikolay Aleexevich Korenevskiy, Riad Taha Al-Kasasbeh, Etab T Al-Kasasbeh, Moaath Musa Al-Smadi, Altyn A Aikeyeva, Mohammad Al-Jundi, Sofia N Rodionova, Osama M Al-Habahbeh, Sergey Filist, Mahdi Salman Alshamasin, Ilyash Maksim
{"title":"工业危险因素对健康影响评价中按氧化状态测定人体防护水平的方法","authors":"Nikolay Aleexevich Korenevskiy, Riad Taha Al-Kasasbeh, Etab T Al-Kasasbeh, Moaath Musa Al-Smadi, Altyn A Aikeyeva, Mohammad Al-Jundi, Sofia N Rodionova, Osama M Al-Habahbeh, Sergey Filist, Mahdi Salman Alshamasin, Ilyash Maksim","doi":"10.1615/CritRevBiomedEng.2023047224","DOIUrl":null,"url":null,"abstract":"<p><p>This work aims at improving the quality of health assessments, specifically under the influence of occupational risk factors. For this purpose, additional informative indicators are utilized in prognostic and diagnostic models. The models are used to characterize the level of body protection based on oxidative status. A quantitative method is proposed to assess the body's level of protection by means of the levels of lipid peroxidation and antioxidant activity, which characterize the body's oxidative status. A mechanism is developed for integrating the proposed method into prognostic and diagnostic decision rules. The developed rules are in the form of mathematical models used to synthesize hybrid fuzzy decision rules, which are then used to quantify the level of body protection (LBP) against external risk factors, based on the use of protection level functions in terms of lipid peroxidation and antioxidant activity. A mechanism for embedding LBP into predictive and diagnostic decision rules has been proposed. The proposed method is used to predict the occurrence and development of coronary heart disease in railroad locomotive drivers. It was found that to improve the predicting and diagnosing of diseases caused by external pathogenic factors, quantitative assessments of LBP, determined by oxidative status, can be implemented. It has been established that the use of the protection level indicator in predictive decision rules makes it possible to increase the efficiency of the prediction while simultaneously increasing its accuracy.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"51 2","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for Determining the Body's Level of Protection According to Oxidant Status in Assessing the Influence of Industrial Risk Factors on Health.\",\"authors\":\"Nikolay Aleexevich Korenevskiy, Riad Taha Al-Kasasbeh, Etab T Al-Kasasbeh, Moaath Musa Al-Smadi, Altyn A Aikeyeva, Mohammad Al-Jundi, Sofia N Rodionova, Osama M Al-Habahbeh, Sergey Filist, Mahdi Salman Alshamasin, Ilyash Maksim\",\"doi\":\"10.1615/CritRevBiomedEng.2023047224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work aims at improving the quality of health assessments, specifically under the influence of occupational risk factors. For this purpose, additional informative indicators are utilized in prognostic and diagnostic models. The models are used to characterize the level of body protection based on oxidative status. A quantitative method is proposed to assess the body's level of protection by means of the levels of lipid peroxidation and antioxidant activity, which characterize the body's oxidative status. A mechanism is developed for integrating the proposed method into prognostic and diagnostic decision rules. The developed rules are in the form of mathematical models used to synthesize hybrid fuzzy decision rules, which are then used to quantify the level of body protection (LBP) against external risk factors, based on the use of protection level functions in terms of lipid peroxidation and antioxidant activity. A mechanism for embedding LBP into predictive and diagnostic decision rules has been proposed. The proposed method is used to predict the occurrence and development of coronary heart disease in railroad locomotive drivers. It was found that to improve the predicting and diagnosing of diseases caused by external pathogenic factors, quantitative assessments of LBP, determined by oxidative status, can be implemented. It has been established that the use of the protection level indicator in predictive decision rules makes it possible to increase the efficiency of the prediction while simultaneously increasing its accuracy.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"51 2\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2023047224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2023047224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Method for Determining the Body's Level of Protection According to Oxidant Status in Assessing the Influence of Industrial Risk Factors on Health.
This work aims at improving the quality of health assessments, specifically under the influence of occupational risk factors. For this purpose, additional informative indicators are utilized in prognostic and diagnostic models. The models are used to characterize the level of body protection based on oxidative status. A quantitative method is proposed to assess the body's level of protection by means of the levels of lipid peroxidation and antioxidant activity, which characterize the body's oxidative status. A mechanism is developed for integrating the proposed method into prognostic and diagnostic decision rules. The developed rules are in the form of mathematical models used to synthesize hybrid fuzzy decision rules, which are then used to quantify the level of body protection (LBP) against external risk factors, based on the use of protection level functions in terms of lipid peroxidation and antioxidant activity. A mechanism for embedding LBP into predictive and diagnostic decision rules has been proposed. The proposed method is used to predict the occurrence and development of coronary heart disease in railroad locomotive drivers. It was found that to improve the predicting and diagnosing of diseases caused by external pathogenic factors, quantitative assessments of LBP, determined by oxidative status, can be implemented. It has been established that the use of the protection level indicator in predictive decision rules makes it possible to increase the efficiency of the prediction while simultaneously increasing its accuracy.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.