Nicole Ibarra R, Mackarena Sáez, Victor Rojas, Rodrigo Oyonarte
{"title":"使用不同黏合剂材料的新型和再生金属支架剪切强度的比较:一项体外研究。","authors":"Nicole Ibarra R, Mackarena Sáez, Victor Rojas, Rodrigo Oyonarte","doi":"10.26650/eor.20231163180","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate and compare shear bond strength (SBS) of new and recycled metallic brackets bonded to conditioned and reconditioned enamel, using two different adhesive materials.</p><p><strong>Materials and methods: </strong>72 extracted sound human premolars were randomly divided into 6 groups. Transbond XT light cured composite (LCC) and Fuji Ortho LC resin-modified glass ionomer (RMGI), were used as adhesive materials. In groups 1 and 2 (control), new brackets were bonded to sound premolars using either LCC or RMGI, respectively. In Groups 3 and 4, new brackets were bonded to reconditioned enamel; and in groups 5 and 6, sandblasted recycled brackets were rebonded to reconditioned enamel. After 5.000 thermal cycles between 5ºC and 55ºC, SBS was evaluated and adhesive remnant on the enamel assessed using the ARI index. Statistical analyses included Shapiro-Wilk, ANOVA, Fligner-Killeen ANOVA and Tukey tests.</p><p><strong>Results: </strong>The statistical analysis showed no significant difference in SBS comparing control and experimental groups for either new or recycled brackets (p = 0.848). The SBS was significantly higher in brackets bonded with LCC (15.7 MPa) than RMGI (11.6 MPa) (p = 0.006). Adhesive failure was the most frequent, with the adhesive remnant covering more than 50% of the bracket base.</p><p><strong>Conclusion: </strong>No significant differences were observed in SBS using either new or recycled brackets, regardless of the dental surface treatment (conditioned or reconditioned). Significantly higher SBS values were obtained with LCC adhesive. Adhesive failure prevails in all groups.</p>","PeriodicalId":41993,"journal":{"name":"European Oral Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/63/eor-057-096.PMC10387137.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of the shear bond strength of new and recycled metallic brackets using different adhesive materials : an in vitro study.\",\"authors\":\"Nicole Ibarra R, Mackarena Sáez, Victor Rojas, Rodrigo Oyonarte\",\"doi\":\"10.26650/eor.20231163180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate and compare shear bond strength (SBS) of new and recycled metallic brackets bonded to conditioned and reconditioned enamel, using two different adhesive materials.</p><p><strong>Materials and methods: </strong>72 extracted sound human premolars were randomly divided into 6 groups. Transbond XT light cured composite (LCC) and Fuji Ortho LC resin-modified glass ionomer (RMGI), were used as adhesive materials. In groups 1 and 2 (control), new brackets were bonded to sound premolars using either LCC or RMGI, respectively. In Groups 3 and 4, new brackets were bonded to reconditioned enamel; and in groups 5 and 6, sandblasted recycled brackets were rebonded to reconditioned enamel. After 5.000 thermal cycles between 5ºC and 55ºC, SBS was evaluated and adhesive remnant on the enamel assessed using the ARI index. Statistical analyses included Shapiro-Wilk, ANOVA, Fligner-Killeen ANOVA and Tukey tests.</p><p><strong>Results: </strong>The statistical analysis showed no significant difference in SBS comparing control and experimental groups for either new or recycled brackets (p = 0.848). The SBS was significantly higher in brackets bonded with LCC (15.7 MPa) than RMGI (11.6 MPa) (p = 0.006). Adhesive failure was the most frequent, with the adhesive remnant covering more than 50% of the bracket base.</p><p><strong>Conclusion: </strong>No significant differences were observed in SBS using either new or recycled brackets, regardless of the dental surface treatment (conditioned or reconditioned). Significantly higher SBS values were obtained with LCC adhesive. Adhesive failure prevails in all groups.</p>\",\"PeriodicalId\":41993,\"journal\":{\"name\":\"European Oral Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/63/eor-057-096.PMC10387137.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Oral Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26650/eor.20231163180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Oral Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26650/eor.20231163180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Comparison of the shear bond strength of new and recycled metallic brackets using different adhesive materials : an in vitro study.
Purpose: To evaluate and compare shear bond strength (SBS) of new and recycled metallic brackets bonded to conditioned and reconditioned enamel, using two different adhesive materials.
Materials and methods: 72 extracted sound human premolars were randomly divided into 6 groups. Transbond XT light cured composite (LCC) and Fuji Ortho LC resin-modified glass ionomer (RMGI), were used as adhesive materials. In groups 1 and 2 (control), new brackets were bonded to sound premolars using either LCC or RMGI, respectively. In Groups 3 and 4, new brackets were bonded to reconditioned enamel; and in groups 5 and 6, sandblasted recycled brackets were rebonded to reconditioned enamel. After 5.000 thermal cycles between 5ºC and 55ºC, SBS was evaluated and adhesive remnant on the enamel assessed using the ARI index. Statistical analyses included Shapiro-Wilk, ANOVA, Fligner-Killeen ANOVA and Tukey tests.
Results: The statistical analysis showed no significant difference in SBS comparing control and experimental groups for either new or recycled brackets (p = 0.848). The SBS was significantly higher in brackets bonded with LCC (15.7 MPa) than RMGI (11.6 MPa) (p = 0.006). Adhesive failure was the most frequent, with the adhesive remnant covering more than 50% of the bracket base.
Conclusion: No significant differences were observed in SBS using either new or recycled brackets, regardless of the dental surface treatment (conditioned or reconditioned). Significantly higher SBS values were obtained with LCC adhesive. Adhesive failure prevails in all groups.