{"title":"不同神经突密度指标与脑不对称评价的比较。","authors":"Ivan I Maximov, Lars T Westlye","doi":"10.1016/j.zemedi.2023.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.</p>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of different neurite density metrics with brain asymmetry evaluation.\",\"authors\":\"Ivan I Maximov, Lars T Westlye\",\"doi\":\"10.1016/j.zemedi.2023.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.</p>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.zemedi.2023.07.003\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2023.07.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Comparison of different neurite density metrics with brain asymmetry evaluation.
The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.