人工智能辅助结构生物学时代的生物分子NMR:老把戏和新机遇。

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Proteins and proteomics Pub Date : 2023-08-11 DOI:10.1016/j.bbapap.2023.140949
Theodoros K. Karamanos, Stephen Matthews
{"title":"人工智能辅助结构生物学时代的生物分子NMR:老把戏和新机遇。","authors":"Theodoros K. Karamanos,&nbsp;Stephen Matthews","doi":"10.1016/j.bbapap.2023.140949","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last 40 years nuclear magnetic resonance (NMR) spectroscopy has established itself as one of the most versatile techniques for the characterization of biomolecules, especially proteins. Given the molecular size limitations of NMR together with recent advances in cryo-electron microscopy and artificial intelligence-assisted protein structure prediction, the bright future of NMR in structural biology has been put into question. In this mini review we argue the contrary. We discuss the unique opportunities solution NMR offers to the protein chemist that distinguish it from all other experimental or computational methods, and how it can benefit from machine learning.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570963923000638/pdfft?md5=b413722dc3bb8b196eeca9ef9b841766&pid=1-s2.0-S1570963923000638-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomolecular NMR in the AI-assisted structural biology era: Old tricks and new opportunities\",\"authors\":\"Theodoros K. Karamanos,&nbsp;Stephen Matthews\",\"doi\":\"10.1016/j.bbapap.2023.140949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the last 40 years nuclear magnetic resonance (NMR) spectroscopy has established itself as one of the most versatile techniques for the characterization of biomolecules, especially proteins. Given the molecular size limitations of NMR together with recent advances in cryo-electron microscopy and artificial intelligence-assisted protein structure prediction, the bright future of NMR in structural biology has been put into question. In this mini review we argue the contrary. We discuss the unique opportunities solution NMR offers to the protein chemist that distinguish it from all other experimental or computational methods, and how it can benefit from machine learning.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000638/pdfft?md5=b413722dc3bb8b196eeca9ef9b841766&pid=1-s2.0-S1570963923000638-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000638\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000638","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在过去的40年里,核磁共振(NMR)光谱已经成为表征生物分子,特别是蛋白质的最通用的技术之一。鉴于核磁共振的分子大小限制,以及冷冻电子显微镜和人工智能辅助蛋白质结构预测的最新进展,核磁共振在结构生物学中的光明前景受到了质疑。在这篇小评论中,我们提出了相反的观点。我们讨论了溶液NMR为蛋白质化学家提供的独特机会,将其与所有其他实验或计算方法区分开来,以及它如何从机器学习中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomolecular NMR in the AI-assisted structural biology era: Old tricks and new opportunities

Over the last 40 years nuclear magnetic resonance (NMR) spectroscopy has established itself as one of the most versatile techniques for the characterization of biomolecules, especially proteins. Given the molecular size limitations of NMR together with recent advances in cryo-electron microscopy and artificial intelligence-assisted protein structure prediction, the bright future of NMR in structural biology has been put into question. In this mini review we argue the contrary. We discuss the unique opportunities solution NMR offers to the protein chemist that distinguish it from all other experimental or computational methods, and how it can benefit from machine learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
55
审稿时长
33 days
期刊介绍: BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.
期刊最新文献
A distinct co-expressed sulfurtransferase extends the physiological role of mercaptopropionate dioxygenase in Pseudomonas aeruginosa PAO1 CDR identification, epitope mapping and binding affinity determination of novel monoclonal antibodies generated against human apolipoprotein B-100 Deciphering the cleavage sites of 3C-like protease in Gammacoronaviruses and Deltacoronaviruses The role of proton-coupled electron transfer from protein to heme in dehaloperoxidase Incorporation of pyridoxal-5′-phosphate into the apoenzyme: A structural study of D-amino acid transaminase from Haliscomenobacter hydrossis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1