意识形态和社会脆弱性对美国新冠肺炎的时空影响。

Erich Seamon, Benjamin J Ridenhour, Craig R Miller, Jennifer Johnson-Leung
{"title":"意识形态和社会脆弱性对美国新冠肺炎的时空影响。","authors":"Erich Seamon, Benjamin J Ridenhour, Craig R Miller, Jennifer Johnson-Leung","doi":"10.1101/2023.07.21.23292785","DOIUrl":null,"url":null,"abstract":"<p><p>In early 2020, the Coronavirus Disease 19 (COVID-19) rapidly spread across the United States (US), exhibiting significant geographic variability. While several studies have examined the predictive relationships of differing factors on COVID-19 deaths, few have looked at spatiotemporal variation at refined geographic scales. The objective of this analysis is to examine this spatiotemporal variation in COVID-19 deaths with respect to association with socioeconomic, health, demographic, and political factors. We use multivariate regression applied to Health and Human Services (HHS) regions as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses were performed on data from three separate time frames which correspond to the spread of distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, and December 2021 until April 2022. Multivariate regression results for all regions across three time windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the value of local features for prediction, such as obesity, which is obscured by coarse-grained analysis. Overall, GWRF results indicate that this more nuanced modeling strategy is useful for determining the spatial variation in the importance of sociodemographic risk factors for predicting COVID-19 mortality.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4a/a0/nihpp-2023.07.21.23292785v1.PMC10402221.pdf","citationCount":"0","resultStr":"{\"title\":\"Spatial Modeling of Sociodemographic Risk for COVID-19 Mortality.\",\"authors\":\"Erich Seamon, Benjamin J Ridenhour, Craig R Miller, Jennifer Johnson-Leung\",\"doi\":\"10.1101/2023.07.21.23292785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In early 2020, the Coronavirus Disease 19 (COVID-19) rapidly spread across the United States (US), exhibiting significant geographic variability. While several studies have examined the predictive relationships of differing factors on COVID-19 deaths, few have looked at spatiotemporal variation at refined geographic scales. The objective of this analysis is to examine this spatiotemporal variation in COVID-19 deaths with respect to association with socioeconomic, health, demographic, and political factors. We use multivariate regression applied to Health and Human Services (HHS) regions as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses were performed on data from three separate time frames which correspond to the spread of distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, and December 2021 until April 2022. Multivariate regression results for all regions across three time windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the value of local features for prediction, such as obesity, which is obscured by coarse-grained analysis. Overall, GWRF results indicate that this more nuanced modeling strategy is useful for determining the spatial variation in the importance of sociodemographic risk factors for predicting COVID-19 mortality.</p>\",\"PeriodicalId\":18659,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4a/a0/nihpp-2023.07.21.23292785v1.PMC10402221.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.07.21.23292785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.07.21.23292785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2020年初,冠状病毒疾病19(新冠肺炎)在美国迅速传播,表现出显著的地理变异性。尽管有几项研究考察了不同因素对新冠肺炎死亡的预测关系,但很少有研究在精细的地理尺度上观察时空变化。本分析的目的是使用区域化多元回归和全国县级地理加权随机森林(GWRF)模型,研究新冠肺炎死亡的时空变化与社会经济、健康、人口统计和政治因素的关系。对三个不同时间段的数据进行了分析:2021年5月之前的大流行、2021年5月份至2021年11月以及2021年12月至2022年4月。三个时间段的区域化回归结果表明,现有的社会防灾脆弱性指标(SVI)与新冠肺炎较高的死亡率相关。相比之下,GWRF模型对特征重要性和预测提供了更有力的评估,暴露了局部特征的重要性,如肥胖,而局部特征被区域划分所掩盖。总体而言,GWRF结果表明,更细致的建模策略有助于捕捉新冠肺炎大流行的不同空间和时间性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Modeling of Sociodemographic Risk for COVID-19 Mortality.

In early 2020, the Coronavirus Disease 19 (COVID-19) rapidly spread across the United States (US), exhibiting significant geographic variability. While several studies have examined the predictive relationships of differing factors on COVID-19 deaths, few have looked at spatiotemporal variation at refined geographic scales. The objective of this analysis is to examine this spatiotemporal variation in COVID-19 deaths with respect to association with socioeconomic, health, demographic, and political factors. We use multivariate regression applied to Health and Human Services (HHS) regions as well as nationwide county-level geographically weighted random forest (GWRF) models. Analyses were performed on data from three separate time frames which correspond to the spread of distinct viral variants in the US: pandemic onset until May 2021, May 2021 through November 2021, and December 2021 until April 2022. Multivariate regression results for all regions across three time windows suggest that existing measures of social vulnerability for disaster preparedness (SVI) are predictive of a higher degree of mortality from COVID-19. In comparison, GWRF models provide a more robust evaluation of feature importance and prediction, exposing the value of local features for prediction, such as obesity, which is obscured by coarse-grained analysis. Overall, GWRF results indicate that this more nuanced modeling strategy is useful for determining the spatial variation in the importance of sociodemographic risk factors for predicting COVID-19 mortality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
After the Infection: A Survey of Pathogens and Non-communicable Human Disease. The Extra-Islet Pancreas Supports Autoimmunity in Human Type 1 Diabetes. Keyphrase Identification Using Minimal Labeled Data with Hierarchical Contexts and Transfer Learning. Advancing Efficacy Prediction for EHR-based Emulated Trials in Repurposing Heart Failure Therapies. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1