观察细节的眼睛:在中央凹尺度上的眼球运动和注意力。

IF 1.5 4区 心理学 Q4 NEUROSCIENCES Vision Research Pub Date : 2023-10-01 DOI:10.1016/j.visres.2023.108277
Martina Poletti
{"title":"观察细节的眼睛:在中央凹尺度上的眼球运动和注意力。","authors":"Martina Poletti","doi":"10.1016/j.visres.2023.108277","DOIUrl":null,"url":null,"abstract":"<div><p>Human vision relies on a tiny region of the retina, the 1-deg foveola, to achieve high spatial resolution. Foveal vision is of paramount importance in daily activities, yet its study is challenging, as eye movements incessantly displace stimuli across this region. Here I will review work that, building on recent advances in eye-tracking and gaze-contingent display, examines how attention and eye movements operate at the foveal level. This research highlights how exploration of fine spatial detail unfolds following visuomotor strategies reminiscent of those occurring at larger scales. It shows that, together with highly precise control of attention, this motor activity is linked to non–homogenous processing within the foveola and selectively modulates sensitivity both in space and time. Overall, the picture emerges of a highly dynamic foveal perception in which fine spatial vision, rather than simply being the result of placing a stimulus at the center of gaze, is the result of a finely tuned and orchestrated synergy of motor, cognitive, and attentional processes.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528557/pdf/","citationCount":"1","resultStr":"{\"title\":\"An eye for detail: Eye movements and attention at the foveal scale\",\"authors\":\"Martina Poletti\",\"doi\":\"10.1016/j.visres.2023.108277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human vision relies on a tiny region of the retina, the 1-deg foveola, to achieve high spatial resolution. Foveal vision is of paramount importance in daily activities, yet its study is challenging, as eye movements incessantly displace stimuli across this region. Here I will review work that, building on recent advances in eye-tracking and gaze-contingent display, examines how attention and eye movements operate at the foveal level. This research highlights how exploration of fine spatial detail unfolds following visuomotor strategies reminiscent of those occurring at larger scales. It shows that, together with highly precise control of attention, this motor activity is linked to non–homogenous processing within the foveola and selectively modulates sensitivity both in space and time. Overall, the picture emerges of a highly dynamic foveal perception in which fine spatial vision, rather than simply being the result of placing a stimulus at the center of gaze, is the result of a finely tuned and orchestrated synergy of motor, cognitive, and attentional processes.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528557/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698923001013\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698923001013","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

人类的视觉依赖于视网膜的一个微小区域,即1度小凹,以实现高空间分辨率。Foveal视觉在日常活动中至关重要,但其研究具有挑战性,因为眼球运动不断取代该区域的刺激。在这里,我将回顾这项工作,在眼睛跟踪和注视条件显示的最新进展的基础上,研究注意力和眼球运动如何在中央凹水平上发挥作用。这项研究强调了精细空间细节的探索是如何按照视觉运动策略展开的,这让人想起了在更大范围内发生的那些策略。研究表明,再加上对注意力的高度精确控制,这种运动活动与小凹内的非同质加工有关,并在空间和时间上选择性地调节敏感性。总的来说,画面呈现出一种高度动态的中央凹感知,在这种感知中,精细的空间视觉不是简单地将刺激置于凝视中心的结果,而是运动、认知和注意力过程精细调整和协调协同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An eye for detail: Eye movements and attention at the foveal scale

Human vision relies on a tiny region of the retina, the 1-deg foveola, to achieve high spatial resolution. Foveal vision is of paramount importance in daily activities, yet its study is challenging, as eye movements incessantly displace stimuli across this region. Here I will review work that, building on recent advances in eye-tracking and gaze-contingent display, examines how attention and eye movements operate at the foveal level. This research highlights how exploration of fine spatial detail unfolds following visuomotor strategies reminiscent of those occurring at larger scales. It shows that, together with highly precise control of attention, this motor activity is linked to non–homogenous processing within the foveola and selectively modulates sensitivity both in space and time. Overall, the picture emerges of a highly dynamic foveal perception in which fine spatial vision, rather than simply being the result of placing a stimulus at the center of gaze, is the result of a finely tuned and orchestrated synergy of motor, cognitive, and attentional processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vision Research
Vision Research 医学-神经科学
CiteScore
3.70
自引率
16.70%
发文量
111
审稿时长
66 days
期刊介绍: Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.
期刊最新文献
Dynamics of the perceptive field size in human adults Resting trabecular meshwork cells experience constitutive cation influx Optical phase nullification partially restores visual and stereo acuity lost to simulated blur from higher-order wavefront aberrations of keratoconic eyes Two different visual stimuli that cause axial eye shortening have no additive effect Scene context and attention independently facilitate MEG decoding of object category
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1