{"title":"伽马射线和紫外线-C灭菌对本土制备的去矿物质冻干骨异体移植物中 BMP-7 水平的影响","authors":"Zainab Kamal, Arundeep Kaur Lamba, Farrukh Faraz, Shruti Tandon, Archita Datta, Nasreen Ansari, Zaid Kamal Madni, Jaya Pandey","doi":"10.1007/s10561-023-10103-2","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of bone morphogenetic proteins in demineralized freeze-dried bone allograft (DFDBA) are responsible for developing hard tissues in intraosseous defects. The most common mode of sterilization of bone allografts, i.e., Gamma rays, have dramatic effects on the structural and biological properties of DFDBA, leading to loss of BMPs. Ultraviolet-C radiation is a newer approach to sterilize biodegradable scaffolds, which is simple to use and ensures efficient sterilization. However, UV-C radiation has not yet been effectively studied to sterilize bone allografts. This study aimed to compare and evaluate the effectiveness of Gamma and Ultraviolet-C rays in sterilizing indigenously prepared DFDBA and assess their effect on the quantity of BMP-7 present in the allograft. DFDBA samples from non-irradiated, gamma irradiated, and UV-C irradiated groups were tested for BMP-7 level and samples sterilized with gamma and UV-C rays were analysed for sterility testing. The estimated mean BMP-7 level was highest in non-irradiated DFDBA samples, followed by UV-C irradiated, and the lowest in gamma irradiated samples. Our study concluded that UV-C rays effectively sterilized DFDBA as indicated by negative sterility test and comprised lesser degradation of BMP-7 than gamma irradiation.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":" ","pages":"475-484"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of gamma and Ultraviolet-C sterilization on BMP-7 level of indigenously prepared demineralized freeze-dried bone allograft.\",\"authors\":\"Zainab Kamal, Arundeep Kaur Lamba, Farrukh Faraz, Shruti Tandon, Archita Datta, Nasreen Ansari, Zaid Kamal Madni, Jaya Pandey\",\"doi\":\"10.1007/s10561-023-10103-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of bone morphogenetic proteins in demineralized freeze-dried bone allograft (DFDBA) are responsible for developing hard tissues in intraosseous defects. The most common mode of sterilization of bone allografts, i.e., Gamma rays, have dramatic effects on the structural and biological properties of DFDBA, leading to loss of BMPs. Ultraviolet-C radiation is a newer approach to sterilize biodegradable scaffolds, which is simple to use and ensures efficient sterilization. However, UV-C radiation has not yet been effectively studied to sterilize bone allografts. This study aimed to compare and evaluate the effectiveness of Gamma and Ultraviolet-C rays in sterilizing indigenously prepared DFDBA and assess their effect on the quantity of BMP-7 present in the allograft. DFDBA samples from non-irradiated, gamma irradiated, and UV-C irradiated groups were tested for BMP-7 level and samples sterilized with gamma and UV-C rays were analysed for sterility testing. The estimated mean BMP-7 level was highest in non-irradiated DFDBA samples, followed by UV-C irradiated, and the lowest in gamma irradiated samples. Our study concluded that UV-C rays effectively sterilized DFDBA as indicated by negative sterility test and comprised lesser degradation of BMP-7 than gamma irradiation.</p>\",\"PeriodicalId\":9723,\"journal\":{\"name\":\"Cell and Tissue Banking\",\"volume\":\" \",\"pages\":\"475-484\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Banking\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10561-023-10103-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Banking","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-023-10103-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Effect of gamma and Ultraviolet-C sterilization on BMP-7 level of indigenously prepared demineralized freeze-dried bone allograft.
The presence of bone morphogenetic proteins in demineralized freeze-dried bone allograft (DFDBA) are responsible for developing hard tissues in intraosseous defects. The most common mode of sterilization of bone allografts, i.e., Gamma rays, have dramatic effects on the structural and biological properties of DFDBA, leading to loss of BMPs. Ultraviolet-C radiation is a newer approach to sterilize biodegradable scaffolds, which is simple to use and ensures efficient sterilization. However, UV-C radiation has not yet been effectively studied to sterilize bone allografts. This study aimed to compare and evaluate the effectiveness of Gamma and Ultraviolet-C rays in sterilizing indigenously prepared DFDBA and assess their effect on the quantity of BMP-7 present in the allograft. DFDBA samples from non-irradiated, gamma irradiated, and UV-C irradiated groups were tested for BMP-7 level and samples sterilized with gamma and UV-C rays were analysed for sterility testing. The estimated mean BMP-7 level was highest in non-irradiated DFDBA samples, followed by UV-C irradiated, and the lowest in gamma irradiated samples. Our study concluded that UV-C rays effectively sterilized DFDBA as indicated by negative sterility test and comprised lesser degradation of BMP-7 than gamma irradiation.
期刊介绍:
Cell and Tissue Banking provides a forum for disseminating information to scientists and clinicians involved in the banking and transplantation of cells and tissues. Cell and Tissue Banking is an international, peer-reviewed journal that publishes original papers in the following areas:
basic research concerning general aspects of tissue banking such as quality assurance and control of banked cells/tissues, effects of preservation and sterilisation methods on cells/tissues, biotechnology, etc.; clinical applications of banked cells/tissues; standards of practice in procurement, processing, storage and distribution of cells/tissues; ethical issues; medico-legal issues.