Sangeetha Vadakke-Madathil, Esmaa Bouhamida, Bingyan Wang, Prabhu Mathiyalagan, Micayla Oniskey, Carlos Santos-Gallego, Michael Hadley, Lori Croft, Fumiko Dekio, Rachel Brody, Shari Gelber, Rhoda Sperling, Hina W Chaudhry
{"title":"从人胎盘中发现一种多能细胞。","authors":"Sangeetha Vadakke-Madathil, Esmaa Bouhamida, Bingyan Wang, Prabhu Mathiyalagan, Micayla Oniskey, Carlos Santos-Gallego, Michael Hadley, Lori Croft, Fumiko Dekio, Rachel Brody, Shari Gelber, Rhoda Sperling, Hina W Chaudhry","doi":"10.1101/2023.08.02.551028","DOIUrl":null,"url":null,"abstract":"<p><p>We report a population of multipotent cells isolated from term human placentas, for the first time, that differentiates into cardiomyocytes and vascular cells with clonal ability, migratory ability, and trancriptomic evidence of immune privilege. Caudal-type homeobox-2 (CDX2) is a conserved factor that regulates trophectoderm formation and placentation during early embryonic development but has not previously been implicated in developmentally conserved regenerative mechanisms. We earlier reported that murine Cdx2 cells restored cardiac function after intravenous delivery in male mice with experimental myocardial infarction (MI). Here we demonstrate that CDX2 cells found in human chorion are poised for cardiovascular differentiation. We isolated CDX2 cells from term placentas of 150 healthy patients and showed that they spontaneously differentiate into cardiomyocytes, functional vascular cells, and retain homing ability in vitro with a transcriptome that supports enhanced cardiogenesis, vasculogenesis, immune modulation, and chemotaxis gene signatures. They restore cardiac function when administered to NOD/SCID mice subjected to MI. CDX2 cells can be clonally propagated in culture with retention of cardiovascular differentiation. Our data compels further use of this ethically feasible cell source in the design of therapeutic strategies for cardiovascular disease.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of a multipotent cell type from the term human placenta.\",\"authors\":\"Sangeetha Vadakke-Madathil, Esmaa Bouhamida, Bingyan Wang, Prabhu Mathiyalagan, Micayla Oniskey, Carlos Santos-Gallego, Michael Hadley, Lori Croft, Fumiko Dekio, Rachel Brody, Shari Gelber, Rhoda Sperling, Hina W Chaudhry\",\"doi\":\"10.1101/2023.08.02.551028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a population of multipotent cells isolated from term human placentas, for the first time, that differentiates into cardiomyocytes and vascular cells with clonal ability, migratory ability, and trancriptomic evidence of immune privilege. Caudal-type homeobox-2 (CDX2) is a conserved factor that regulates trophectoderm formation and placentation during early embryonic development but has not previously been implicated in developmentally conserved regenerative mechanisms. We earlier reported that murine Cdx2 cells restored cardiac function after intravenous delivery in male mice with experimental myocardial infarction (MI). Here we demonstrate that CDX2 cells found in human chorion are poised for cardiovascular differentiation. We isolated CDX2 cells from term placentas of 150 healthy patients and showed that they spontaneously differentiate into cardiomyocytes, functional vascular cells, and retain homing ability in vitro with a transcriptome that supports enhanced cardiogenesis, vasculogenesis, immune modulation, and chemotaxis gene signatures. They restore cardiac function when administered to NOD/SCID mice subjected to MI. CDX2 cells can be clonally propagated in culture with retention of cardiovascular differentiation. Our data compels further use of this ethically feasible cell source in the design of therapeutic strategies for cardiovascular disease.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.08.02.551028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.02.551028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovery of a multipotent cell type from the term human placenta.
We report a population of multipotent cells isolated from term human placentas, for the first time, that differentiates into cardiomyocytes and vascular cells with clonal ability, migratory ability, and trancriptomic evidence of immune privilege. Caudal-type homeobox-2 (CDX2) is a conserved factor that regulates trophectoderm formation and placentation during early embryonic development but has not previously been implicated in developmentally conserved regenerative mechanisms. We earlier reported that murine Cdx2 cells restored cardiac function after intravenous delivery in male mice with experimental myocardial infarction (MI). Here we demonstrate that CDX2 cells found in human chorion are poised for cardiovascular differentiation. We isolated CDX2 cells from term placentas of 150 healthy patients and showed that they spontaneously differentiate into cardiomyocytes, functional vascular cells, and retain homing ability in vitro with a transcriptome that supports enhanced cardiogenesis, vasculogenesis, immune modulation, and chemotaxis gene signatures. They restore cardiac function when administered to NOD/SCID mice subjected to MI. CDX2 cells can be clonally propagated in culture with retention of cardiovascular differentiation. Our data compels further use of this ethically feasible cell source in the design of therapeutic strategies for cardiovascular disease.