{"title":"TrueBeam线性加速器装置中强度调制放射治疗和RapidArc综合治疗计划测试的应用。","authors":"Soumya Roy, Biplab Sarkar, Anirudh Pradhan","doi":"10.4103/jmp.jmp_56_22","DOIUrl":null,"url":null,"abstract":"<p><p>An extended version of task group report (TG)-119 dosimetric tests was introduced and tested on the TrueBeam linear accelerator setup. Treatment plan results and quality assurance (QA) results of RapidArc (RA) and intensity-modulated radiotherapy (IMRT) were compared to understand the limitation and efficacy of the RA and IMRT system of the linear accelerator. Test structure sets were drawn on OCTAVIUS four-dimensional (4D) phantom computed tomography scan data for this study. We generated treatment plans based on the specified goal in the Eclipse™ treatment planning system using RA and IMRT in the study phantom. We used the same planning objectives for RA and IMRT techniques. Planar dose verification was performed using electronic portal imaging device and OCTAVIUS 4D phantom. The treatment log file was further analyzed using Pylinac (V2.4.0 (Open Source Code library available on Github, runs under Python programming language)) to compare the dosimetric outcome of RA and IMRT. Dose to the planning target volume (PTV) 1-5 and organ at risk (OAR) were analyzed in this study for the efficiency comparison of RA and IMRT. The primary objective was accomplished by adhering to the dose constraints associated with PTV 2 and the OAR. RA and IMRT also met the secondary objective. The tertiary goal of dose delivery to PTV 4 was met with RA but not IMRT. This study can be utilized to compare different institutions' planning and patient-specific QA (PSQA) procedures. The findings of this study were in line with the published works of the literature. A multi-institutional planning and delivery accuracy audit can be built using this structure and set of planning objectives having similar PSQA phantom. The TG-119 report incorporated test challenges that were combined in a single study set and a single plan. This reduces the complexity of performing the original TG-119 tests, whereas keeping the challenges as introduced in the TG-119 report. This study's planning and dosimetric results could be further utilized for dosimetry audit with any institute having a linear accelerator and OCTAVIUS 4D phantom for PSQA.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"48 2","pages":"204-209"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/a1/JMP-48-204.PMC10419748.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of a Comprehensive Treatment Planning Test for Credentialing Intensity-Modulated Radiotherapy and RapidArc in a TrueBeam Linear Accelerator Setup.\",\"authors\":\"Soumya Roy, Biplab Sarkar, Anirudh Pradhan\",\"doi\":\"10.4103/jmp.jmp_56_22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An extended version of task group report (TG)-119 dosimetric tests was introduced and tested on the TrueBeam linear accelerator setup. Treatment plan results and quality assurance (QA) results of RapidArc (RA) and intensity-modulated radiotherapy (IMRT) were compared to understand the limitation and efficacy of the RA and IMRT system of the linear accelerator. Test structure sets were drawn on OCTAVIUS four-dimensional (4D) phantom computed tomography scan data for this study. We generated treatment plans based on the specified goal in the Eclipse™ treatment planning system using RA and IMRT in the study phantom. We used the same planning objectives for RA and IMRT techniques. Planar dose verification was performed using electronic portal imaging device and OCTAVIUS 4D phantom. The treatment log file was further analyzed using Pylinac (V2.4.0 (Open Source Code library available on Github, runs under Python programming language)) to compare the dosimetric outcome of RA and IMRT. Dose to the planning target volume (PTV) 1-5 and organ at risk (OAR) were analyzed in this study for the efficiency comparison of RA and IMRT. The primary objective was accomplished by adhering to the dose constraints associated with PTV 2 and the OAR. RA and IMRT also met the secondary objective. The tertiary goal of dose delivery to PTV 4 was met with RA but not IMRT. This study can be utilized to compare different institutions' planning and patient-specific QA (PSQA) procedures. The findings of this study were in line with the published works of the literature. A multi-institutional planning and delivery accuracy audit can be built using this structure and set of planning objectives having similar PSQA phantom. The TG-119 report incorporated test challenges that were combined in a single study set and a single plan. This reduces the complexity of performing the original TG-119 tests, whereas keeping the challenges as introduced in the TG-119 report. This study's planning and dosimetric results could be further utilized for dosimetry audit with any institute having a linear accelerator and OCTAVIUS 4D phantom for PSQA.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"48 2\",\"pages\":\"204-209\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/a1/JMP-48-204.PMC10419748.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_56_22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_56_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Application of a Comprehensive Treatment Planning Test for Credentialing Intensity-Modulated Radiotherapy and RapidArc in a TrueBeam Linear Accelerator Setup.
An extended version of task group report (TG)-119 dosimetric tests was introduced and tested on the TrueBeam linear accelerator setup. Treatment plan results and quality assurance (QA) results of RapidArc (RA) and intensity-modulated radiotherapy (IMRT) were compared to understand the limitation and efficacy of the RA and IMRT system of the linear accelerator. Test structure sets were drawn on OCTAVIUS four-dimensional (4D) phantom computed tomography scan data for this study. We generated treatment plans based on the specified goal in the Eclipse™ treatment planning system using RA and IMRT in the study phantom. We used the same planning objectives for RA and IMRT techniques. Planar dose verification was performed using electronic portal imaging device and OCTAVIUS 4D phantom. The treatment log file was further analyzed using Pylinac (V2.4.0 (Open Source Code library available on Github, runs under Python programming language)) to compare the dosimetric outcome of RA and IMRT. Dose to the planning target volume (PTV) 1-5 and organ at risk (OAR) were analyzed in this study for the efficiency comparison of RA and IMRT. The primary objective was accomplished by adhering to the dose constraints associated with PTV 2 and the OAR. RA and IMRT also met the secondary objective. The tertiary goal of dose delivery to PTV 4 was met with RA but not IMRT. This study can be utilized to compare different institutions' planning and patient-specific QA (PSQA) procedures. The findings of this study were in line with the published works of the literature. A multi-institutional planning and delivery accuracy audit can be built using this structure and set of planning objectives having similar PSQA phantom. The TG-119 report incorporated test challenges that were combined in a single study set and a single plan. This reduces the complexity of performing the original TG-119 tests, whereas keeping the challenges as introduced in the TG-119 report. This study's planning and dosimetric results could be further utilized for dosimetry audit with any institute having a linear accelerator and OCTAVIUS 4D phantom for PSQA.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.