Investigation of Cerebral Hemodynamics During Endovascular Aspiration: Development of an Experimental and Numerical Setup.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2023-06-01 DOI:10.1007/s13239-023-00660-8
C A Luisi, A Amiri, M Büsen, T Sichermann, O Nikoubashman, M Wiesmann, U Steinseifer, M Müller, M Neidlin
{"title":"Investigation of Cerebral Hemodynamics During Endovascular Aspiration: Development of an Experimental and Numerical Setup.","authors":"C A Luisi,&nbsp;A Amiri,&nbsp;M Büsen,&nbsp;T Sichermann,&nbsp;O Nikoubashman,&nbsp;M Wiesmann,&nbsp;U Steinseifer,&nbsp;M Müller,&nbsp;M Neidlin","doi":"10.1007/s13239-023-00660-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Acute ischemic stroke is a life-threatening emergency caused by an occlusion of a cerebral artery through a blood clot. Aspiration thrombectomy is an endovascular therapy for the removal of vessel occlusions. However, open questions regarding the hemodynamics during the intervention remain, motivating investigations of blood flow within cerebral arteries. In this study, we present a combined experimental and numerical approach to analyze hemodynamics during endovascular aspiration.</p><p><strong>Methods: </strong>We have developed an in vitro setup for investigations of hemodynamic changes during endovascular aspiration within a compliant model of patient-specific cerebral arteries. Pressures, flows, and locally resolved velocities were obtained. In addition, we established a computational fluid dynamics (CFD) model and compared the simulations during physiological conditions and in two aspiration scenarios with different occlusions.</p><p><strong>Results: </strong>Flow redistribution within cerebral arteries after ischemic stroke is strongly dependent on the severity of the occlusion and on the volume flow extracted by endovascular aspiration. Numerical simulations exhibit an excellent correlation of R = 0.92 for flow rates and a good correlation of R = 0.73 for pressures. Further on, the local velocity field inside the basilar artery had a good agreement between CFD model and particle image velocimetry (PIV) data.</p><p><strong>Conclusion: </strong>The presented setup allows for in vitro investigations of artery occlusions and endovascular aspiration techniques on arbitrary patient-specific cerebrovascular anatomies. The in silico model provides consistent predictions of flows and pressures in several aspiration scenarios.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412675/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00660-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose: Acute ischemic stroke is a life-threatening emergency caused by an occlusion of a cerebral artery through a blood clot. Aspiration thrombectomy is an endovascular therapy for the removal of vessel occlusions. However, open questions regarding the hemodynamics during the intervention remain, motivating investigations of blood flow within cerebral arteries. In this study, we present a combined experimental and numerical approach to analyze hemodynamics during endovascular aspiration.

Methods: We have developed an in vitro setup for investigations of hemodynamic changes during endovascular aspiration within a compliant model of patient-specific cerebral arteries. Pressures, flows, and locally resolved velocities were obtained. In addition, we established a computational fluid dynamics (CFD) model and compared the simulations during physiological conditions and in two aspiration scenarios with different occlusions.

Results: Flow redistribution within cerebral arteries after ischemic stroke is strongly dependent on the severity of the occlusion and on the volume flow extracted by endovascular aspiration. Numerical simulations exhibit an excellent correlation of R = 0.92 for flow rates and a good correlation of R = 0.73 for pressures. Further on, the local velocity field inside the basilar artery had a good agreement between CFD model and particle image velocimetry (PIV) data.

Conclusion: The presented setup allows for in vitro investigations of artery occlusions and endovascular aspiration techniques on arbitrary patient-specific cerebrovascular anatomies. The in silico model provides consistent predictions of flows and pressures in several aspiration scenarios.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管内吸吸过程中脑血流动力学的研究:实验和数值装置的发展。
目的:急性缺血性中风是由血凝块阻塞大脑动脉引起的危及生命的紧急情况。抽吸取栓术是一种血管内治疗血管闭塞的方法。然而,关于干预期间血流动力学的开放性问题仍然存在,促使研究脑动脉内的血流。在这项研究中,我们提出了一种结合实验和数值的方法来分析血管内抽吸过程中的血流动力学。方法:我们开发了一种体外装置,用于在患者特异性脑动脉的依从性模型中研究血管内吸入过程中的血流动力学变化。得到了压力、流量和局部分解速度。此外,我们建立了计算流体动力学(CFD)模型,并比较了生理条件下和不同闭塞情况下两种吸入情况的模拟结果。结果:缺血性脑卒中后脑动脉内血流再分布与闭塞程度和血管内吸出的血流容量密切相关。数值模拟表明,流量的相关性R = 0.92,压力的相关性R = 0.73。此外,CFD模型与粒子图像测速(PIV)数据在基底动脉内的局部速度场具有较好的一致性。结论:所提出的设置允许动脉闭塞的体外调查和血管内穿刺技术对任意患者特定的脑血管解剖。计算机模型提供了几种抽吸情景下流量和压力的一致预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Insights from Computational Fluid Dynamics and In Vitro Studies for Stent Protrusion in Iliac Vein: How Far Shall We Go? Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. On the Relative Effects of Wall and Intraluminal Thrombus Constitutive Material Properties in Abdominal Aortic Aneurysm Wall Stress. The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study. Activation of a Soft Robotic Left Ventricular Phantom Embedded in a Closed-Loop Cardiovascular Simulator: A Computational and Experimental Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1