Jacob Miller, Alykhan Sewani, Jeffrey Rezazada, Yara Alawneh, Pedram Kazemian, Maria Terricabras, Graham Wright, M Ali Tavallaei
{"title":"Quantification of Mechanical Characteristics of Conventional Steerable Ablation Catheters for Treatment of Atrial Fibrillation Using a Heart Phantom.","authors":"Jacob Miller, Alykhan Sewani, Jeffrey Rezazada, Yara Alawneh, Pedram Kazemian, Maria Terricabras, Graham Wright, M Ali Tavallaei","doi":"10.1007/s13239-023-00662-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate and reliable catheter navigation is important in formation of adequate lesions during radiofrequency cardiac catheter ablation. To inform future device design efforts and to characterize the limitations of conventional devices, the focus of this study is to assess and quantify the mechanical performance of manual ablation catheters for pulmonary vein isolation procedures within a phantom heart model.</p><p><strong>Methods: </strong>We measured three important metrics: accuracy of catheter tip navigation to target anatomical landmarks at the pulmonary veins (PVs), orientation of the catheter relative to the tissue at the targets, and the delivered force values and their stability and variations at those targets. A stereovision system was used for navigational guidance and to measure the catheter's tip position and orientation relative to the targets. To measure force, piezoelectric sensors were used which were integrated at the targets, whereby operators were instructed to stabilize the catheter to achieve a chosen reference force value.</p><p><strong>Results: </strong>An overall positioning accuracy of 1.57 ± 1.71 mm was achieved for all targets. No statistical significance was observed in position accuracy between the right and left PVs (p = 0.5138). The orientation of the catheter relative to tissue surface was 41° ± 21° with no statistical significance between targets. The overall force stability was 41 ± 6 g with higher difficulty in force stabilization in the right compared to the left PV (40 ± 8 vs. 43 ± 2 g, p < 0.0001).</p><p><strong>Conclusion: </strong>Based on our results, future improvements to manual catheter navigation for ablation should focus on improving device performance in orientation control and improved force stability.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00662-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: Accurate and reliable catheter navigation is important in formation of adequate lesions during radiofrequency cardiac catheter ablation. To inform future device design efforts and to characterize the limitations of conventional devices, the focus of this study is to assess and quantify the mechanical performance of manual ablation catheters for pulmonary vein isolation procedures within a phantom heart model.
Methods: We measured three important metrics: accuracy of catheter tip navigation to target anatomical landmarks at the pulmonary veins (PVs), orientation of the catheter relative to the tissue at the targets, and the delivered force values and their stability and variations at those targets. A stereovision system was used for navigational guidance and to measure the catheter's tip position and orientation relative to the targets. To measure force, piezoelectric sensors were used which were integrated at the targets, whereby operators were instructed to stabilize the catheter to achieve a chosen reference force value.
Results: An overall positioning accuracy of 1.57 ± 1.71 mm was achieved for all targets. No statistical significance was observed in position accuracy between the right and left PVs (p = 0.5138). The orientation of the catheter relative to tissue surface was 41° ± 21° with no statistical significance between targets. The overall force stability was 41 ± 6 g with higher difficulty in force stabilization in the right compared to the left PV (40 ± 8 vs. 43 ± 2 g, p < 0.0001).
Conclusion: Based on our results, future improvements to manual catheter navigation for ablation should focus on improving device performance in orientation control and improved force stability.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.