{"title":"RNA-targeted small-molecule drug discoveries: a machine-learning perspective.","authors":"Huan Xiao, Xin Yang, Yihao Zhang, Zongkang Zhang, Ge Zhang, Bao-Ting Zhang","doi":"10.1080/15476286.2023.2223498","DOIUrl":null,"url":null,"abstract":"<p><p>In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1b/6e/KRNB_20_2223498.PMC10283424.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2023.2223498","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SMs is still in its early stages. This is primarily because of the intrinsic structural instability of RNA molecules that impede the structure-based screening or designing of RNA-targeted SMs. Recently, with more studies revealing RNA structures and a growing number of RNA-targeted ligands being identified, it resulted in an increased interest in the field of drugging RNA. Undeniably, intracellular RNA is much more abundant than protein and, if successfully targeted, will be a major alternative target for therapeutics. Therefore, in this context, as well as under the premise of having RNA-related research data, ML-based methods can get involved in improving the speed of traditional experimental processes. [Figure: see text].
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy