Network Analysis of Behavioral Activation/Inhibition Systems and Brain Volume in Individuals With and Without Major Depressive Disorder or Social Anxiety Disorder
Qimin Liu , Delaney Davey , Jagan Jimmy , Olusola Ajilore , Heide Klumpp
{"title":"Network Analysis of Behavioral Activation/Inhibition Systems and Brain Volume in Individuals With and Without Major Depressive Disorder or Social Anxiety Disorder","authors":"Qimin Liu , Delaney Davey , Jagan Jimmy , Olusola Ajilore , Heide Klumpp","doi":"10.1016/j.bpsc.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Social anxiety disorder<span> (SAD) and major depressive disorder (MDD) are characterized by behavioral abnormalities in motivational systems, namely the behavioral inhibition system (BIS) and behavioral activation system (BAS). Limited studies indicate brain volume in regions that support emotion, learning/memory, reward, and cognitive functions relate to BIS/BAS. To increase understanding of BIS/BAS, the current study used a network approach.</span></p></div><div><h3>Methods</h3><p>Patients with SAD (<em>n</em> = 59), patients with MDD (<em>n =</em> 64), and healthy control participants (<em>n =</em><span> 36) completed a BIS/BAS questionnaire and structural magnetic resonance imaging<span> scans; volumetric regions of interest comprised cortical and limbic structures based on previous BIS/BAS studies. A Bayesian Gaussian graphical model was used for each diagnostic group, and groups were compared. Among network metrics, bridge centrality was of primary interest. Analysis of variance evaluated BIS/BAS behaviors between groups.</span></span></p></div><div><h3>Results</h3><p><span>Bridge centrality showed hippocampus positively related to BAS, but not to BIS, in the MDD group; no findings were observed in the SAD or control groups. Yet, network density (i.e., overall strength of relationships between variables) and degree centrality (i.e., overall relationship between one variable to all other variables) showed that cortical (e.g., </span>precuneus<span>, medial orbitofrontal) and subcortical (e.g., amygdala, hippocampus) regions differed between diagnostic groups. Analysis of variance results showed BAS was lower in the MDD/SAD groups compared with the control group, while BIS was higher in the SAD group relative to the MDD group, which in turn was higher than the control group.</span></p></div><div><h3>Conclusions</h3><p>Preliminary findings indicate that network-level aberrations may underlie motivational abnormalities in MDD and SAD. Evidence of BIS/BAS differences builds on previous work that points to shared and distinct motivational differences in internalizing psychopathologies.</p></div>","PeriodicalId":54231,"journal":{"name":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","volume":"9 6","pages":"Pages 551-560"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451902223002185","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Social anxiety disorder (SAD) and major depressive disorder (MDD) are characterized by behavioral abnormalities in motivational systems, namely the behavioral inhibition system (BIS) and behavioral activation system (BAS). Limited studies indicate brain volume in regions that support emotion, learning/memory, reward, and cognitive functions relate to BIS/BAS. To increase understanding of BIS/BAS, the current study used a network approach.
Methods
Patients with SAD (n = 59), patients with MDD (n = 64), and healthy control participants (n = 36) completed a BIS/BAS questionnaire and structural magnetic resonance imaging scans; volumetric regions of interest comprised cortical and limbic structures based on previous BIS/BAS studies. A Bayesian Gaussian graphical model was used for each diagnostic group, and groups were compared. Among network metrics, bridge centrality was of primary interest. Analysis of variance evaluated BIS/BAS behaviors between groups.
Results
Bridge centrality showed hippocampus positively related to BAS, but not to BIS, in the MDD group; no findings were observed in the SAD or control groups. Yet, network density (i.e., overall strength of relationships between variables) and degree centrality (i.e., overall relationship between one variable to all other variables) showed that cortical (e.g., precuneus, medial orbitofrontal) and subcortical (e.g., amygdala, hippocampus) regions differed between diagnostic groups. Analysis of variance results showed BAS was lower in the MDD/SAD groups compared with the control group, while BIS was higher in the SAD group relative to the MDD group, which in turn was higher than the control group.
Conclusions
Preliminary findings indicate that network-level aberrations may underlie motivational abnormalities in MDD and SAD. Evidence of BIS/BAS differences builds on previous work that points to shared and distinct motivational differences in internalizing psychopathologies.
期刊介绍:
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging is an official journal of the Society for Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms, and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal focuses on studies using the tools and constructs of cognitive neuroscience, including the full range of non-invasive neuroimaging and human extra- and intracranial physiological recording methodologies. It publishes both basic and clinical studies, including those that incorporate genetic data, pharmacological challenges, and computational modeling approaches. The journal publishes novel results of original research which represent an important new lead or significant impact on the field. Reviews and commentaries that focus on topics of current research and interest are also encouraged.