Philip Bland, Harry Saville, Patty T. Wai, Lucinda Curnow, Gareth Muirhead, Jadwiga Nieminuszczy, Nivedita Ravindran, Marie Beatrix John, Somaieh Hedayat, Holly E. Barker, James Wright, Lu Yu, Ioanna Mavrommati, Abigail Read, Barrie Peck, Mark Allen, Patrycja Gazinska, Helen N. Pemberton, Aditi Gulati, Sarah Nash, Farzana Noor, Naomi Guppy, Ioannis Roxanis, Guy Pratt, Ceri Oldreive, Tatjana Stankovic, Samantha Barlow, Helen Kalirai, Sarah E. Coupland, Ronan Broderick, Samar Alsafadi, Alexandre Houy, Marc-Henri Stern, Stephen Pettit, Jyoti S. Choudhary, Syed Haider, Wojciech Niedzwiedz, Christopher J. Lord, Rachael Natrajan
{"title":"SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response","authors":"Philip Bland, Harry Saville, Patty T. Wai, Lucinda Curnow, Gareth Muirhead, Jadwiga Nieminuszczy, Nivedita Ravindran, Marie Beatrix John, Somaieh Hedayat, Holly E. Barker, James Wright, Lu Yu, Ioanna Mavrommati, Abigail Read, Barrie Peck, Mark Allen, Patrycja Gazinska, Helen N. Pemberton, Aditi Gulati, Sarah Nash, Farzana Noor, Naomi Guppy, Ioannis Roxanis, Guy Pratt, Ceri Oldreive, Tatjana Stankovic, Samantha Barlow, Helen Kalirai, Sarah E. Coupland, Ronan Broderick, Samar Alsafadi, Alexandre Houy, Marc-Henri Stern, Stephen Pettit, Jyoti S. Choudhary, Syed Haider, Wojciech Niedzwiedz, Christopher J. Lord, Rachael Natrajan","doi":"10.1038/s41588-023-01460-5","DOIUrl":null,"url":null,"abstract":"SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population. SF3B1 mutations confer sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPi). Mechanistically, this is independent of homologous recombination repair and instead relies on a defective replication stress response due to a reduction of the cyclin-dependent kinase 2 interacting protein (CINP). PARPi treatment of SF3B1 mutant (SF3B1MUT) tumors leads to replication stress induced by increased fork origin firing and culminates in cell cycle stalling.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"55 8","pages":"1311-1323"},"PeriodicalIF":31.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412459/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-023-01460-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population. SF3B1 mutations confer sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPi). Mechanistically, this is independent of homologous recombination repair and instead relies on a defective replication stress response due to a reduction of the cyclin-dependent kinase 2 interacting protein (CINP). PARPi treatment of SF3B1 mutant (SF3B1MUT) tumors leads to replication stress induced by increased fork origin firing and culminates in cell cycle stalling.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution