Hypothermia Treatment after Hypoxia-Ischemia in Glutathione Peroxidase-1 Overexpressing Mice.

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neuroscience Pub Date : 2024-01-01 Epub Date: 2023-05-24 DOI:10.1159/000531204
R Ann Sheldon, Christine Windsor, Fuxin Lu, Nicholas R Stewart, Xiangning Jiang, Donna M Ferriero
{"title":"Hypothermia Treatment after Hypoxia-Ischemia in Glutathione Peroxidase-1 Overexpressing Mice.","authors":"R Ann Sheldon, Christine Windsor, Fuxin Lu, Nicholas R Stewart, Xiangning Jiang, Donna M Ferriero","doi":"10.1159/000531204","DOIUrl":null,"url":null,"abstract":"<p><p>The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"98-111"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000531204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谷胱甘肽过氧化物酶-1过表达小鼠缺氧缺血后的低温治疗。
发育中的大脑对氧化应激非常敏感,内源性抗氧化机制不足以防止缺氧缺血性损伤。谷胱甘肽过氧化物酶(GPX1)活性降低缺氧缺血性损伤。治疗性低温也能减少啮齿动物和人类大脑的缺氧缺血性损伤,但效果有限。在这里,我们将GPX1过表达与低温结合在缺氧缺血(HI)的P9小鼠模型中,以测试两种治疗方法的有效性。组织学分析显示,低温组小鼠损伤程度小于常温组小鼠。然而,在GPX1-tg小鼠中,尽管低温处理小鼠的中位数得分较低,但低温和常温之间没有显着差异。无论有无低温,所有转基因组在HI后30 min和24 h以及WT后30 min的皮质GPX1蛋白表达均较高。GPX1在所有转基因组和患有HI和正常体温的WT的海马中在24小时较高,而在30分钟时则没有。Spectrin 150在所有HI组中较高,而Spectrin 120仅在24小时时在HI组中较高。在30分钟时,WT和GPX1-tg HI中的ERK1/2激活均减少。因此,在相对适度的损伤下,我们看到WT冷却的好处,而GPX1-tg小鼠大脑中没有。事实上,我们在P9模型中没有看到GPx1增加的好处(与P7模型不同),这可能表明这些老年小鼠的氧化应激升高到一定程度,增加的GPx1不足以减少损伤。GPX1过表达与HI后体温过低缺乏益处,这表明GPX1过表达引发的通路可能干扰HT提供的神经保护机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
期刊最新文献
Ex vivo magnetic resonance imaging of the human fetal brain. Pubertal- and Stress-Dependent Changes in Cellular Activation and Expression of Excitatory Amino Acid Receptor Subunits in the Paraventricular Nucleus of the Hypothalamus in Male and Female Rats. Dexmedetomidine Alleviates the Long-Term Neurodevelopmental Toxicity Induced by Sevoflurane in the Developing Brain. The Relationship between Early Exposure to General Anesthesia and Neurobehavioral Deficits. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1