Biochemical and proteomic insights into sarcoplasmic reticulum Ca2+-ATPase complexes in skeletal muscles.

IF 3.8 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Expert Review of Proteomics Pub Date : 2023-07-01 Epub Date: 2023-09-07 DOI:10.1080/14789450.2023.2255743
Paul Dowling, Dieter Swandulla, Kay Ohlendieck
{"title":"Biochemical and proteomic insights into sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase complexes in skeletal muscles.","authors":"Paul Dowling, Dieter Swandulla, Kay Ohlendieck","doi":"10.1080/14789450.2023.2255743","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission.</p><p><strong>Areas covered: </strong>The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca<sup>2+</sup>-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective.</p><p><strong>Expert opinion: </strong>Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca<sup>2+</sup>-pump proteins of the sarcoplasmic reticulum.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2023.2255743","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission.

Areas covered: The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective.

Expert opinion: Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨骼肌肌浆网Ca2+-ATP酶复合物的生化和蛋白质组学研究。
简介:骨骼肌在复杂的膜系统中含有大量高分子量蛋白质复合物。整合膜蛋白参与多种细胞功能,包括离子处理、膜稳态、能量代谢和力传递的调节。涵盖的领域:本文概述了骨骼肌中膜蛋白和大蛋白组装体的蛋白质组学分析。这包括主要的生物化学分离技术和用于研究膜蛋白的质谱方法的关键概述。作为一个具有分析挑战性的大蛋白复合物的例证,讨论了肌浆网Ca2+-ATP酶的蛋白质组学检测和表征。从蛋白质组学的角度评估了这种大蛋白复合物在正常肌肉功能中的生物学作用,在纤维类型多样性的背景下,以及与生理适应和病理生理异常机制的关系。专家观点:基于质谱的肌肉蛋白质组学在基础和应用肌肉学领域取得了决定性的进展。尽管研究膜蛋白在技术上具有挑战性,但蛋白质分离方法的创新与灵敏的质谱法和改进的系统生物信息学相结合,使骨骼肌膜蛋白复合物(如肌浆网的Ca2+-泵蛋白)能够进行详细的蛋白质组学检测和表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Review of Proteomics
Expert Review of Proteomics 生物-生化研究方法
CiteScore
7.60
自引率
0.00%
发文量
20
审稿时长
6-12 weeks
期刊介绍: Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease. The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery. The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections: Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale Article highlights - an executive summary cutting to the author''s most critical points.
期刊最新文献
Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Data-independent acquisition in metaproteomics. Salivary metabolomics in early detection of oral squamous cell carcinoma - a meta-analysis. The potential of proteomics for in-depth bioanalytical investigations of satellite cell function in applied myology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1