{"title":"AlphaFold and what is next: bridging functional, systems and structural biology.","authors":"Kacper Szczepski, Lukasz Jaremko","doi":"10.1080/14789450.2025.2456046","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The DeepMind's AlphaFold (AF) has revolutionized biomedical research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules.</p><p><strong>Areas covered: </strong>In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF. We also provide a detailed analysis its of strengths and limitations, and explore more recent iterations, modifications, and practical applications of this strategy. Moreover, we map the path forward for expanding the landscape of AF toward predicting structures of every protein and peptide in the proteome in the most physiologically relevant form. This discussion is based on an extensive literature search performed using PubMed and Google Scholar.</p><p><strong>Expert opinion: </strong>While significant progress has been made to enhance AF's modeling capabilities, we argue that a combined approach integrating both various in silico and in vitro methods will be most beneficial for the future of structural biology, bridging the gaps between static and dynamic features of proteins and their functions.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2025.2456046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The DeepMind's AlphaFold (AF) has revolutionized biomedical research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules.
Areas covered: In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF. We also provide a detailed analysis its of strengths and limitations, and explore more recent iterations, modifications, and practical applications of this strategy. Moreover, we map the path forward for expanding the landscape of AF toward predicting structures of every protein and peptide in the proteome in the most physiologically relevant form. This discussion is based on an extensive literature search performed using PubMed and Google Scholar.
Expert opinion: While significant progress has been made to enhance AF's modeling capabilities, we argue that a combined approach integrating both various in silico and in vitro methods will be most beneficial for the future of structural biology, bridging the gaps between static and dynamic features of proteins and their functions.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.