High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function.

Mu Gao, Peik Lund-Andersen, Alex Morehead, Sajid Mahmud, Chen Chen, Xiao Chen, Nabin Giri, Raj S Roy, Farhan Quadir, T Chad Effler, Ryan Prout, Subil Abraham, Wael Elwasif, N Quentin Haas, Jeffrey Skolnick, Jianlin Cheng, Ada Sedova
{"title":"High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function.","authors":"Mu Gao,&nbsp;Peik Lund-Andersen,&nbsp;Alex Morehead,&nbsp;Sajid Mahmud,&nbsp;Chen Chen,&nbsp;Xiao Chen,&nbsp;Nabin Giri,&nbsp;Raj S Roy,&nbsp;Farhan Quadir,&nbsp;T Chad Effler,&nbsp;Ryan Prout,&nbsp;Subil Abraham,&nbsp;Wael Elwasif,&nbsp;N Quentin Haas,&nbsp;Jeffrey Skolnick,&nbsp;Jianlin Cheng,&nbsp;Ada Sedova","doi":"10.1109/mlhpc54614.2021.00010","DOIUrl":null,"url":null,"abstract":"<p><p>Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen significant benefits from adopting HPC practices. In this work, we present a novel HPC pipeline that incorporates various machine-learning approaches for structure-based functional annotation of proteins on the scale of whole genomes. Our pipeline makes extensive use of deep learning and provides computational insights into best practices for training advanced deep-learning models for high-throughput data such as proteomics data. We showcase methodologies our pipeline currently supports and detail future tasks for our pipeline to envelop, including large-scale sequence comparison using SAdLSA and prediction of protein tertiary structures using AlphaFold2.</p>","PeriodicalId":75334,"journal":{"name":"Workshop on Machine Learning in HPC Environments. Workshop on Machine Learning in HPC Environments","volume":"2021 ","pages":"46-57"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802329/pdf/nihms-1769610.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Machine Learning in HPC Environments. Workshop on Machine Learning in HPC Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlhpc54614.2021.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen significant benefits from adopting HPC practices. In this work, we present a novel HPC pipeline that incorporates various machine-learning approaches for structure-based functional annotation of proteins on the scale of whole genomes. Our pipeline makes extensive use of deep learning and provides computational insights into best practices for training advanced deep-learning models for high-throughput data such as proteomics data. We showcase methodologies our pipeline currently supports and detail future tasks for our pipeline to envelop, including large-scale sequence comparison using SAdLSA and prediction of protein tertiary structures using AlphaFold2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于蛋白质结构和功能基因组级预测的高性能深度学习工具箱。
随着高性能计算(HPC)的出现,计算生物学是许多需要创新和加速的科学学科之一。近年来,机器学习领域也从采用高性能计算实践中获益良多。在这项工作中,我们提出了一种新的HPC管道,该管道结合了各种机器学习方法,用于在全基因组规模上对蛋白质进行基于结构的功能注释。我们的产品线广泛使用深度学习,并为高通量数据(如蛋白质组学数据)训练高级深度学习模型的最佳实践提供计算见解。我们展示了我们的管道目前支持的方法,并详细介绍了我们的管道要包膜的未来任务,包括使用SAdLSA进行大规模序列比较和使用AlphaFold2预测蛋白质三级结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1