首页 > 最新文献

Workshop on Machine Learning in HPC Environments. Workshop on Machine Learning in HPC Environments最新文献

英文 中文
High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function. 用于蛋白质结构和功能基因组级预测的高性能深度学习工具箱。
Mu Gao, Peik Lund-Andersen, Alex Morehead, Sajid Mahmud, Chen Chen, Xiao Chen, Nabin Giri, Raj S Roy, Farhan Quadir, T Chad Effler, Ryan Prout, Subil Abraham, Wael Elwasif, N Quentin Haas, Jeffrey Skolnick, Jianlin Cheng, Ada Sedova

Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen significant benefits from adopting HPC practices. In this work, we present a novel HPC pipeline that incorporates various machine-learning approaches for structure-based functional annotation of proteins on the scale of whole genomes. Our pipeline makes extensive use of deep learning and provides computational insights into best practices for training advanced deep-learning models for high-throughput data such as proteomics data. We showcase methodologies our pipeline currently supports and detail future tasks for our pipeline to envelop, including large-scale sequence comparison using SAdLSA and prediction of protein tertiary structures using AlphaFold2.

随着高性能计算(HPC)的出现,计算生物学是许多需要创新和加速的科学学科之一。近年来,机器学习领域也从采用高性能计算实践中获益良多。在这项工作中,我们提出了一种新的HPC管道,该管道结合了各种机器学习方法,用于在全基因组规模上对蛋白质进行基于结构的功能注释。我们的产品线广泛使用深度学习,并为高通量数据(如蛋白质组学数据)训练高级深度学习模型的最佳实践提供计算见解。我们展示了我们的管道目前支持的方法,并详细介绍了我们的管道要包膜的未来任务,包括使用SAdLSA进行大规模序列比较和使用AlphaFold2预测蛋白质三级结构。
{"title":"High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function.","authors":"Mu Gao,&nbsp;Peik Lund-Andersen,&nbsp;Alex Morehead,&nbsp;Sajid Mahmud,&nbsp;Chen Chen,&nbsp;Xiao Chen,&nbsp;Nabin Giri,&nbsp;Raj S Roy,&nbsp;Farhan Quadir,&nbsp;T Chad Effler,&nbsp;Ryan Prout,&nbsp;Subil Abraham,&nbsp;Wael Elwasif,&nbsp;N Quentin Haas,&nbsp;Jeffrey Skolnick,&nbsp;Jianlin Cheng,&nbsp;Ada Sedova","doi":"10.1109/mlhpc54614.2021.00010","DOIUrl":"https://doi.org/10.1109/mlhpc54614.2021.00010","url":null,"abstract":"<p><p>Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen significant benefits from adopting HPC practices. In this work, we present a novel HPC pipeline that incorporates various machine-learning approaches for structure-based functional annotation of proteins on the scale of whole genomes. Our pipeline makes extensive use of deep learning and provides computational insights into best practices for training advanced deep-learning models for high-throughput data such as proteomics data. We showcase methodologies our pipeline currently supports and detail future tasks for our pipeline to envelop, including large-scale sequence comparison using SAdLSA and prediction of protein tertiary structures using AlphaFold2.</p>","PeriodicalId":75334,"journal":{"name":"Workshop on Machine Learning in HPC Environments. Workshop on Machine Learning in HPC Environments","volume":"2021 ","pages":"46-57"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802329/pdf/nihms-1769610.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10267212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Workshop on Machine Learning in HPC Environments. Workshop on Machine Learning in HPC Environments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1