Metal complexes of Tridentate Schiff base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor.

IF 1.1 4区 化学 Q4 CHEMISTRY, INORGANIC & NUCLEAR Zeitschrift fur Anorganische und Allgemeine Chemie Pub Date : 2021-12-10 Epub Date: 2021-10-11 DOI:10.1002/zaac.202100245
Gehad G Mohamed, M M Omar, Yasmin M Ahmed
{"title":"Metal complexes of Tridentate Schiff base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor.","authors":"Gehad G Mohamed, M M Omar, Yasmin M Ahmed","doi":"10.1002/zaac.202100245","DOIUrl":null,"url":null,"abstract":"<p><p>Mononuclear chelates of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II) and Cd(II) resulted from new tridentate Schiff base ligand, 4-((1-(5-acetyl-2,4-dihydroxyphenyl)ethylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, were synthesized. Metal to ligand ratio was found to be1 : 1, which was revealed via elemental analysis and characterized via various spectroscopic tools. IR has point out that the coordination of the ligand towards the metal ions was carried out via NOO donor atoms. UV-Vis, <sup>1</sup>H NMR spectral data, molar conductivity measurements, BET surface area, melting points and theoretically through density function theory were used such as characterizing techniques in supporting further interpretation of the complexes structures. The complexes were octahedral except Cu(II) and Ni(II) complexes were tetrahedral as suggested from the magnetic moment measurement. The complexes were found to have surface area, pore volume and particle radius of 23-176 m<sup>2</sup> g<sup>-1</sup>, 0.02-0.33 cc/g and 8.71-4.32 nm, respectively, as pointed out from BET measurement. Schiff base ligand and metal complexes were tested <i>in vitro</i> to estimate their antimicrobial activity opposed to Gram-negative and Gram-positive bacterial and fungal organisms. MOE 2008 was used headed for screen potential drugs with molecular docking by the protein sites of new coronavirus and the study was constructed to molecular docking without validation through MD simulations.</p>","PeriodicalId":54398,"journal":{"name":"Zeitschrift fur Anorganische und Allgemeine Chemie","volume":"647 23-24","pages":"2201-2218"},"PeriodicalIF":1.1000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662136/pdf/ZAAC-647-2201.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Anorganische und Allgemeine Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/zaac.202100245","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Mononuclear chelates of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II) and Cd(II) resulted from new tridentate Schiff base ligand, 4-((1-(5-acetyl-2,4-dihydroxyphenyl)ethylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, were synthesized. Metal to ligand ratio was found to be1 : 1, which was revealed via elemental analysis and characterized via various spectroscopic tools. IR has point out that the coordination of the ligand towards the metal ions was carried out via NOO donor atoms. UV-Vis, 1H NMR spectral data, molar conductivity measurements, BET surface area, melting points and theoretically through density function theory were used such as characterizing techniques in supporting further interpretation of the complexes structures. The complexes were octahedral except Cu(II) and Ni(II) complexes were tetrahedral as suggested from the magnetic moment measurement. The complexes were found to have surface area, pore volume and particle radius of 23-176 m2 g-1, 0.02-0.33 cc/g and 8.71-4.32 nm, respectively, as pointed out from BET measurement. Schiff base ligand and metal complexes were tested in vitro to estimate their antimicrobial activity opposed to Gram-negative and Gram-positive bacterial and fungal organisms. MOE 2008 was used headed for screen potential drugs with molecular docking by the protein sites of new coronavirus and the study was constructed to molecular docking without validation through MD simulations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三叉席夫碱金属配合物:合成、表征、生物活性以及与 COVID-19 蛋白受体的分子对接研究。
由新的三叉席夫碱配体 4-((1-(5-乙酰基-2,4-二羟基苯基)亚乙基)氨基)-1,5-二甲基-2-苯基-1H-吡唑-3(2H)-酮合成了 Cr(III)、Mn(II)、Fe(III)、Ni(II)、Cu(II)、Zn(II) 和 Cd(II) 的单核螯合物。金属与配体的比例为 1 :1 ,并通过元素分析和各种光谱工具进行了表征。红外光谱显示,配体通过 NOO 供体原子与金属离子配位。紫外-可见光谱、1H NMR 光谱数据、摩尔电导率测量值、BET 表面积、熔点以及密度函数理论等表征技术都被用来支持对复合物结构的进一步解释。根据磁矩测量结果,除 Cu(II) 和 Ni(II) 复合物为四面体外,其他复合物均为八面体。根据 BET 测量,这些配合物的表面积、孔体积和颗粒半径分别为 23-176 m2 g-1、0.02-0.33 cc/g 和 8.71-4.32 nm。对希夫碱配体和金属复合物进行了体外测试,以评估它们对革兰氏阴性和革兰氏阳性细菌和真菌的抗菌活性。以 MOE 2008 为首,通过新型冠状病毒的蛋白质位点进行分子对接,筛选潜在药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zeitschrift fur Anorganische und Allgemeine Chemie
Zeitschrift fur Anorganische und Allgemeine Chemie 化学-无机化学与核化学
CiteScore
2.60
自引率
14.30%
发文量
308
审稿时长
1 months
期刊介绍: ZAAC is an international scientific journal which publishes original papers on new relevant research results from all areas of inorganic chemistry, solid state chemistry, and co-ordination chemistry. The contributions reflect the latest findings in these research areas and serve the development of new materials, such as super-hard materials, electrical superconductors, or intermetallic compounds. Up-to-date physical methods for the characterization of new chemical compounds and materials are also described.
期刊最新文献
Metal complexes of Tridentate Schiff base: Synthesis, Characterization, Biological Activity and Molecular Docking Studies with COVID-19 Protein Receptor. Structural and Electronic Properties of Iron(0) PNP Pincer Complexes. Iron-Gallium and Cobalt-Gallium Tetraphosphido Complexes. A Terminal Chlorophosphinidene Complex. Synthesis, Isolation and Crystal Structures of the Metalated Ylides [Cy3P-C-SO2Tol]M (M = Li, Na, K).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1