Perception and Memory in the Ventral Visual Stream and Medial Temporal Lobe.

IF 5 2区 医学 Q1 NEUROSCIENCES Annual Review of Vision Science Pub Date : 2023-09-15 Epub Date: 2023-04-17 DOI:10.1146/annurev-vision-120222-014200
Chris B Martin, Morgan D Barense
{"title":"Perception and Memory in the Ventral Visual Stream and Medial Temporal Lobe.","authors":"Chris B Martin,&nbsp;Morgan D Barense","doi":"10.1146/annurev-vision-120222-014200","DOIUrl":null,"url":null,"abstract":"<p><p>Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":"9 ","pages":"409-434"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-120222-014200","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腹侧视觉流和内侧颞叶的感知和记忆。
传统上,感知和记忆被认为是独立的认知功能,由不同的大脑区域支持。典型的观点是,视觉信息的感知处理由腹侧视觉流支持,而长期陈述性记忆由内侧颞叶支持。然而,这种模块化框架无法解释越来越多的证据,这些证据揭示了早期视觉区域在长期识别记忆中的作用以及内侧颞叶结构在高级感知处理中的作用。在这篇文章中,我们回顾了在人类、非人类灵长类动物和啮齿类动物中进行的相关研究。我们得出的结论是,这些证据在很大程度上与在大脑感知和记忆系统之间划出清晰功能边界的理论建议不一致。相反,经验发现的权重最好通过一个具有代表性的层次模型来捕捉,该模型强调内容的差异,而不是腹侧视觉流和内侧颞叶内的认知过程的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
期刊最新文献
Informing Endpoints for Clinical Trials of Geographic Atrophy Retinal Connectomics: A Review Impact of Glaucomatous Ganglion Cell Damage on Central Visual Function Digital Image Sensor Evolution and New Frontiers Cellular and Molecular Mechanisms Regulating Retinal Synapse Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1