{"title":"Recombinase-independent AAV for anterograde transsynaptic tracing.","authors":"Islam Faress, Valentina Khalil, Haruka Yamamoto, Szilard Sajgo, Keisuke Yonehara, Sadegh Nabavi","doi":"10.1186/s13041-023-01053-7","DOIUrl":null,"url":null,"abstract":"<p><p>Viral transsynaptic labeling has become indispensable for investigating the functional connectivity of neural circuits in the mammalian brain. Adeno-associated virus serotype 1 (AAV1) allows for anterograde transneuronal labeling and manipulation of postsynaptic neurons. However, it is limited to delivering an AAV1 expressing a recombinase which relies on using transgenic animals or genetic access to postsynaptic neurons. We reasoned that a strong expression level could overcome this limitation. To this end, we used a self-complementary AAV of serotype 1 (scAAV1) under a strong promoter (CAG). We demonstrated the anterograde transneuronal efficiency of scAAV1 by delivering a fluorescent marker in mouse retina-superior colliculus and thalamic-amygdala pathways in a recombinase-independent manner in the mouse brain. In addition to investigating neuronal connectivity, anterograde transsynaptic AAVs with a strong promoter may be suitable for functional mapping and imaging.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-023-01053-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Viral transsynaptic labeling has become indispensable for investigating the functional connectivity of neural circuits in the mammalian brain. Adeno-associated virus serotype 1 (AAV1) allows for anterograde transneuronal labeling and manipulation of postsynaptic neurons. However, it is limited to delivering an AAV1 expressing a recombinase which relies on using transgenic animals or genetic access to postsynaptic neurons. We reasoned that a strong expression level could overcome this limitation. To this end, we used a self-complementary AAV of serotype 1 (scAAV1) under a strong promoter (CAG). We demonstrated the anterograde transneuronal efficiency of scAAV1 by delivering a fluorescent marker in mouse retina-superior colliculus and thalamic-amygdala pathways in a recombinase-independent manner in the mouse brain. In addition to investigating neuronal connectivity, anterograde transsynaptic AAVs with a strong promoter may be suitable for functional mapping and imaging.