Rui Zhang, Lusheng Gu, Wei Chen, Nobutoshi Tanaka, Zhengrong Zhou, Honglin Xu, Tao Xu, Wei Ji, Xin Liang, Wenxiang Meng
{"title":"CAMSAP2 and CAMSAP3 localize at microtubule intersections to regulate the spatial distribution of microtubules.","authors":"Rui Zhang, Lusheng Gu, Wei Chen, Nobutoshi Tanaka, Zhengrong Zhou, Honglin Xu, Tao Xu, Wei Ji, Xin Liang, Wenxiang Meng","doi":"10.1093/jmcb/mjad050","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule networks support many cellular processes and exhibit a highly ordered architecture. However, due to the limited axial resolution of conventional light microscopy, the structural features of these networks cannot be resolved in three-dimensional (3D) space. Here, we used customized ultra-high-resolution interferometric single-molecule localization microscopy to characterize the microtubule networks in Caco2 cells. We found that the calmodulin-regulated spectrin-associated proteins (CAMSAPs) localize at a portion of microtubule intersections. Further investigation showed that depletion of CAMSAP2 and CAMSAP3 leads to the narrowing of the inter-microtubule distance. Mechanistically, CAMSAPs recognize microtubule defects, which often occur near microtubule intersections, and then recruit katanin to remove the damaged microtubules. Therefore, the CAMSAP-katanin complex is a regulatory module for the distance between microtubules. Taken together, our results characterize the architecture of cellular microtubule networks in high resolution and provide molecular insights into how the 3D structure of microtubule networks is controlled.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microtubule networks support many cellular processes and exhibit a highly ordered architecture. However, due to the limited axial resolution of conventional light microscopy, the structural features of these networks cannot be resolved in three-dimensional (3D) space. Here, we used customized ultra-high-resolution interferometric single-molecule localization microscopy to characterize the microtubule networks in Caco2 cells. We found that the calmodulin-regulated spectrin-associated proteins (CAMSAPs) localize at a portion of microtubule intersections. Further investigation showed that depletion of CAMSAP2 and CAMSAP3 leads to the narrowing of the inter-microtubule distance. Mechanistically, CAMSAPs recognize microtubule defects, which often occur near microtubule intersections, and then recruit katanin to remove the damaged microtubules. Therefore, the CAMSAP-katanin complex is a regulatory module for the distance between microtubules. Taken together, our results characterize the architecture of cellular microtubule networks in high resolution and provide molecular insights into how the 3D structure of microtubule networks is controlled.
期刊介绍:
The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome.
JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.