A MACHINE LEARNING MODEL TO PREDICT SEIZURE SUSCEPTIBILITY FROM RESTING-STATE FMRI CONNECTIVITY.

Rachael Garner, Marianna La Rocca, Giuseppe Barisano, Arthur W Toga, Dominique Duncan, Paul Vespa
{"title":"A MACHINE LEARNING MODEL TO PREDICT SEIZURE SUSCEPTIBILITY FROM RESTING-STATE FMRI CONNECTIVITY.","authors":"Rachael Garner,&nbsp;Marianna La Rocca,&nbsp;Giuseppe Barisano,&nbsp;Arthur W Toga,&nbsp;Dominique Duncan,&nbsp;Paul Vespa","doi":"10.23919/springsim.2019.8732859","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a leading cause of disability globally. Many patients develop post-traumatic epilepsy, or recurrent seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis that may assist in preventing seizure occurrence by identifying high-risk patients. We present a novel method of assessing seizure susceptibility using data from 49 patients enrolled in the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We employ a machine learning paradigm that utilizes a Random Forest classifier trained with resting-state functional magnetic resonance imaging (fMRI) data to predict seizure outcomes. Following 100 rounds of stratified cross-validation with 70% of resting state fMRI scans as the training set and 30% as the testing set, our model was found to assess seizure outcome in the testing set with 69% accuracy. To validate the method, we compared our results with classification by Support Vector Machines and Neural Network classifiers.</p>","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"2019 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/springsim.2019.8732859","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring simulation conference (SpringSim)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/springsim.2019.8732859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Traumatic brain injury (TBI) is a leading cause of disability globally. Many patients develop post-traumatic epilepsy, or recurrent seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis that may assist in preventing seizure occurrence by identifying high-risk patients. We present a novel method of assessing seizure susceptibility using data from 49 patients enrolled in the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We employ a machine learning paradigm that utilizes a Random Forest classifier trained with resting-state functional magnetic resonance imaging (fMRI) data to predict seizure outcomes. Following 100 rounds of stratified cross-validation with 70% of resting state fMRI scans as the training set and 30% as the testing set, our model was found to assess seizure outcome in the testing set with 69% accuracy. To validate the method, we compared our results with classification by Support Vector Machines and Neural Network classifiers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从静息状态fmri连接预测癫痫易感性的机器学习模型。
外伤性脑损伤(TBI)是全球致残的主要原因。许多患者发生创伤后癫痫,或在TBI后复发性癫痫发作。近年来,人们已经做出了重大努力,以确定癫痫发生的生物标志物,这些标志物可能有助于通过识别高危患者来预防癫痫发作。我们提出了一种评估癫痫易感性的新方法,该方法使用了49名参加抗癫痫治疗癫痫生物信息学研究(EpiBioS4Rx)的患者的数据。我们采用了一种机器学习范式,该范式利用静息状态功能磁共振成像(fMRI)数据训练的随机森林分类器来预测癫痫发作结果。经过100轮分层交叉验证,其中70%的静息状态fMRI扫描作为训练集,30%作为测试集,我们的模型在测试集中评估癫痫发作结果的准确率为69%。为了验证该方法,我们将结果与支持向量机和神经网络分类器的分类结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing for agility in constant change: HR strategies for teaching center leaders A mixed methods study of faculty experiences in a course design institute THE CHEMICAL COMPOSITION AND POLLUANTS CONTENT OF SOME ECOLOGICAL AND CONVENTIONAL GREEN FORAGE SOURCES FOR DAIRY COW FEED THE EFFECT OF DIFFERENT TECHNIQUES OF MACERATION-FERMENTATION ON THE PHENOLIC COMPOSITION OF RED WINES SEED DORMANCY BREAKING OF AN ENDANGERED MEDICINAL TREE SPECIES (TAXUS BACCATA L.) USING EMBRYO CULTURE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1