Zhihang Chen , Ziwei Luo , Di Zhang , Huiqin Li , Xuefei Liu , Kaiyu Zhu , Hongwan Zhang , Zongping Wang , Penghui Zhou , Jian Ren , An Zhao , Zhixiang Zuo
{"title":"TIGER: A Web Portal of Tumor Immunotherapy Gene Expression Resource","authors":"Zhihang Chen , Ziwei Luo , Di Zhang , Huiqin Li , Xuefei Liu , Kaiyu Zhu , Hongwan Zhang , Zongping Wang , Penghui Zhou , Jian Ren , An Zhao , Zhixiang Zuo","doi":"10.1016/j.gpb.2022.08.004","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Immunotherapy</strong> is a promising cancer treatment method; however, only a few patients benefit from it. The development of new immunotherapy strategies and effective <strong>biomarkers</strong> of response and resistance is urgently needed. Recently, high-throughput bulk and single-cell <strong>gene expression</strong> profiling technologies have generated valuable resources. However, these resources are not well organized and systematic analysis is difficult. Here, we present TIGER, a tumor immunotherapy gene expression resource, which contains bulk transcriptome data of 1508 tumor samples with clinical immunotherapy outcomes and 11,057 tumor/normal samples without clinical immunotherapy outcomes, as well as single-cell transcriptome data of 2,116,945 immune cells from 655 samples. TIGER provides many useful modules for analyzing collected and user-provided data. Using the resource in TIGER, we identified a tumor-enriched subset of CD4<sup>+</sup> T cells. Patients with melanoma with a higher signature score of this subset have a significantly better response and survival under immunotherapy. We believe that TIGER will be helpful in understanding anti-tumor immunity mechanisms and discovering effective biomarkers. TIGER is freely accessible at <span>http://tiger.canceromics.org/</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922000997","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 19
Abstract
Immunotherapy is a promising cancer treatment method; however, only a few patients benefit from it. The development of new immunotherapy strategies and effective biomarkers of response and resistance is urgently needed. Recently, high-throughput bulk and single-cell gene expression profiling technologies have generated valuable resources. However, these resources are not well organized and systematic analysis is difficult. Here, we present TIGER, a tumor immunotherapy gene expression resource, which contains bulk transcriptome data of 1508 tumor samples with clinical immunotherapy outcomes and 11,057 tumor/normal samples without clinical immunotherapy outcomes, as well as single-cell transcriptome data of 2,116,945 immune cells from 655 samples. TIGER provides many useful modules for analyzing collected and user-provided data. Using the resource in TIGER, we identified a tumor-enriched subset of CD4+ T cells. Patients with melanoma with a higher signature score of this subset have a significantly better response and survival under immunotherapy. We believe that TIGER will be helpful in understanding anti-tumor immunity mechanisms and discovering effective biomarkers. TIGER is freely accessible at http://tiger.canceromics.org/.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.