Ming Xiao, Rui Wei, Jun Yu, Chujie Gao, Fengyi Yang, Le Zhang
{"title":"CpG island definition and methylation mapping of the T2T-YAO genome","authors":"Ming Xiao, Rui Wei, Jun Yu, Chujie Gao, Fengyi Yang, Le Zhang","doi":"10.1093/gpbjnl/qzae009","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> Precisely defining and mapping all cytosine positions and their clusters, known as CpG islands (CGIs), as well as their methylation status are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.7–5.8% sequence divergency of variable categories depending on quality cutoffs. Genes among the divergent sequences are mostly associated with neurological functions. Moreover, CGIs associated with the divergent sequences are significantly different with respect to CpG density and observed CpG/expected CpG (O/E) ratio between the two genomes. Finally, we find that the T2T-YAO genome not only has a greater CpG site coverage than that of the T2T-CHM13 genome when whole-genome bisulfite sequencing (WGBS) data from the European and American populations are mapped to each reference, but also show more hyper-methylated CpG sites as compared to the T2T-CHM13 genome. Our study suggests that future genome-wide epigenetic studies of the Chinese populations rely on both acquisition of high-quality methylation data and subsequent precision CGI mapping based on the Chinese T2T reference.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract Precisely defining and mapping all cytosine positions and their clusters, known as CpG islands (CGIs), as well as their methylation status are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.7–5.8% sequence divergency of variable categories depending on quality cutoffs. Genes among the divergent sequences are mostly associated with neurological functions. Moreover, CGIs associated with the divergent sequences are significantly different with respect to CpG density and observed CpG/expected CpG (O/E) ratio between the two genomes. Finally, we find that the T2T-YAO genome not only has a greater CpG site coverage than that of the T2T-CHM13 genome when whole-genome bisulfite sequencing (WGBS) data from the European and American populations are mapped to each reference, but also show more hyper-methylated CpG sites as compared to the T2T-CHM13 genome. Our study suggests that future genome-wide epigenetic studies of the Chinese populations rely on both acquisition of high-quality methylation data and subsequent precision CGI mapping based on the Chinese T2T reference.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.