Calibration of ionic and cellular cardiac electrophysiology models.

IF 7.9 Q1 Medicine Wiley Interdisciplinary Reviews-Systems Biology and Medicine Pub Date : 2020-07-01 Epub Date: 2020-02-21 DOI:10.1002/wsbm.1482
Dominic G Whittaker, Michael Clerx, Chon Lok Lei, David J Christini, Gary R Mirams
{"title":"Calibration of ionic and cellular cardiac electrophysiology models.","authors":"Dominic G Whittaker, Michael Clerx, Chon Lok Lei, David J Christini, Gary R Mirams","doi":"10.1002/wsbm.1482","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"12 4","pages":"e1482"},"PeriodicalIF":7.9000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
校准离子和细胞心脏电生理学模型。
心脏电生理学模型是最成熟、研究最深入的生物系统数学模型之一。随着模型越来越多地用于定量而非定性预测,这种成熟性也带来了新的挑战。因此,根据实验数据集校准离子电流和动作电位(AP)模型中的参数是构建预测模型的关键步骤。这篇综述强调了心脏模型校准的一些基本概念,旨在让从事其他生物学领域工作的计算和数学建模人员易于理解。我们讨论了电生理学领域在离子通道和细胞 AP 尺度上的经典和最新校准方法。最后,我们将讨论迄今为止的工作所提出的诸多挑战,以及对校准过程进行可重复描述的必要性,以便使模型能够根据新的数据集进行重新校准,并在此基础上开展新的研究。本文归类于分析和计算方法 > 计算方法 生理学 > 健康和疾病中的哺乳动物生理学 系统特性和过程的模型 > 细胞模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
期刊最新文献
Tools for computational analysis of moving boundary problems in cellular mechanobiology. Cellular reprogramming: Mathematics meets medicine. Thermoregulation: A journey from physiology to computational models and the intensive care unit. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Computational models to explore the complexity of the epithelial to mesenchymal transition in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1