Identification of Glucose Metabolism-Related Genes in the Progression from Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma.

IF 1.4 4区 生物学 Q4 GENETICS & HEREDITY Genetics research Pub Date : 2022-01-01 DOI:10.1155/2022/8566342
Siyuan Wang, Yiling Li, Ning Liu, Wei Shen, Wenhao Xu, Peng Yao
{"title":"Identification of Glucose Metabolism-Related Genes in the Progression from Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma.","authors":"Siyuan Wang,&nbsp;Yiling Li,&nbsp;Ning Liu,&nbsp;Wei Shen,&nbsp;Wenhao Xu,&nbsp;Peng Yao","doi":"10.1155/2022/8566342","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is a manifestation of hepatic metabolic syndrome that varies in severity. Hepatocellular carcinoma progresses from NAFLD when there is heterogeneity in the infiltration of immune cells and molecules. A precise molecular classification of NAFLD remains lacking, allowing further exploration of the link between NAFLD and hepatocellular carcinoma. In this work, a weighted gene coexpression network analysis was used to identify two coexpression modules based on multiple omics data used to differentiate NAFLD subtypes. Additionally, key genes in the process of glucose metabolism and NAFLD were used to construct a prognostic model in a cohort of patients with hepatocellular carcinoma. Furthermore, the specific expression of signature genes in hepatocellular carcinoma cells was analyzed using a single-cell RNA sequencing approach. A total of 19 liver tissues of NAFLD patients were obtained from the GEO database, and 81 glucose metabolism-related genes were downloaded from the CTD database. In addition, based on nine signature genes, we constructed a prognostic model to divide the HCC cohort into high and low-risk groups. We also demonstrated a significant correlation between prognostic models and clinical phenotypes. Furthermore, we integrated single-cell RNA-sequencing data and immunology data to assess potential relationships between different molecular subtypes and hepatocellular carcinoma. Finally, our study discovered that the glucose metabolism pathway may play an important role in the process of NAFLD-hepatocellular carcinoma. In addition, three glucose metabolism-related genes (SERPINE1, VCAN, and TFPI2) may be the potential targets for the immunotherapy of patients with NAFLD-hepatocellular carcinoma.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2022 ","pages":"8566342"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2022/8566342","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a manifestation of hepatic metabolic syndrome that varies in severity. Hepatocellular carcinoma progresses from NAFLD when there is heterogeneity in the infiltration of immune cells and molecules. A precise molecular classification of NAFLD remains lacking, allowing further exploration of the link between NAFLD and hepatocellular carcinoma. In this work, a weighted gene coexpression network analysis was used to identify two coexpression modules based on multiple omics data used to differentiate NAFLD subtypes. Additionally, key genes in the process of glucose metabolism and NAFLD were used to construct a prognostic model in a cohort of patients with hepatocellular carcinoma. Furthermore, the specific expression of signature genes in hepatocellular carcinoma cells was analyzed using a single-cell RNA sequencing approach. A total of 19 liver tissues of NAFLD patients were obtained from the GEO database, and 81 glucose metabolism-related genes were downloaded from the CTD database. In addition, based on nine signature genes, we constructed a prognostic model to divide the HCC cohort into high and low-risk groups. We also demonstrated a significant correlation between prognostic models and clinical phenotypes. Furthermore, we integrated single-cell RNA-sequencing data and immunology data to assess potential relationships between different molecular subtypes and hepatocellular carcinoma. Finally, our study discovered that the glucose metabolism pathway may play an important role in the process of NAFLD-hepatocellular carcinoma. In addition, three glucose metabolism-related genes (SERPINE1, VCAN, and TFPI2) may be the potential targets for the immunotherapy of patients with NAFLD-hepatocellular carcinoma.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非酒精性脂肪肝向肝细胞癌进展过程中葡萄糖代谢相关基因的鉴定
非酒精性脂肪性肝病(NAFLD)是肝代谢综合征的一种表现,其严重程度不同。当免疫细胞和分子的浸润存在异质性时,肝细胞癌从NAFLD发展而来。NAFLD的精确分子分类仍然缺乏,这使得进一步探索NAFLD与肝细胞癌之间的联系成为可能。在这项工作中,基于用于区分NAFLD亚型的多个组学数据,使用加权基因共表达网络分析来鉴定两个共表达模块。此外,我们还利用糖代谢过程中的关键基因和NAFLD构建了肝细胞癌患者的预后模型。此外,使用单细胞RNA测序方法分析了肝癌细胞中特征基因的特异性表达。GEO数据库中共获取NAFLD患者19个肝组织,CTD数据库中下载81个糖代谢相关基因。此外,基于9个特征基因,我们构建了一个预后模型,将HCC队列划分为高危组和低危组。我们还证明了预后模型和临床表型之间的显著相关性。此外,我们整合了单细胞rna测序数据和免疫学数据来评估不同分子亚型与肝细胞癌之间的潜在关系。最后,我们的研究发现糖代谢途径可能在nafld -肝细胞癌的发生过程中发挥重要作用。此外,三个糖代谢相关基因(SERPINE1、VCAN和TFPI2)可能是nafld -肝细胞癌患者免疫治疗的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics research
Genetics research 生物-遗传学
自引率
6.70%
发文量
74
审稿时长
>12 weeks
期刊介绍: Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.
期刊最新文献
Pivotal Role of FBXW4 in Glioma Progression and Prognosis. Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma. Identification and Validation of Cytotoxicity-Related Features to Predict Prognostic and Immunotherapy Response in Patients with Clear Cell Renal Cell Carcinoma. Investigating the Prognostic and Oncogenic Roles of Membrane-Associated Ring-CH-Type Finger 9 in Colorectal Cancer. Impact of Extracellular Matrix-Related Genes on the Tumor Microenvironment and Prognostic Indicators in Esophageal Cancer: A Comprehensive Analytical Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1