A pair formation model with recovery: Application to mpox

IF 3 3区 医学 Q2 INFECTIOUS DISEASES Epidemics Pub Date : 2023-09-01 DOI:10.1016/j.epidem.2023.100693
Matthew I. Betti , Lauren Farrell , Jane Heffernan
{"title":"A pair formation model with recovery: Application to mpox","authors":"Matthew I. Betti ,&nbsp;Lauren Farrell ,&nbsp;Jane Heffernan","doi":"10.1016/j.epidem.2023.100693","DOIUrl":null,"url":null,"abstract":"<div><p>The current global outbreaks of mpox is a unique infectious disease in the way it seems to be transmitting: it has been observed to be highly concentrated in communities of men who have sex with men (MSM) through pair formation, and also provides long lasting immunity. This framework of mostly close, prolonged contact spreading a disease that admits immunity after infection is unlike similar infections which either offer little to no immunity post-infection or are lifelong infections. This creates the need for a new model framework that incorporates pair formation structure with recovery. While seemingly a straight forward model, we show how new dynamics arise from the combination of pair formation and recovery that are not present in a standard model with recovery and also not present in a pair formation model without recovery. We see that the combination of these two properties allows for waves of infection that are not seen in a standard SIR model. These dynamics suggest that outbreaks of mpox around the world may require special attention from public health. We also derive a reproduction number for this model and estimate the reproduction number of human mpox to be <span><math><mrow><mo>≈</mo><mn>2</mn><mo>.</mo><mn>3</mn></mrow></math></span> using global and Canadian data. The expression derived for <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> can help estimate key parameters for diseases transmission and public health interventions and compare to equivalent models without pair formation.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000294","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 2

Abstract

The current global outbreaks of mpox is a unique infectious disease in the way it seems to be transmitting: it has been observed to be highly concentrated in communities of men who have sex with men (MSM) through pair formation, and also provides long lasting immunity. This framework of mostly close, prolonged contact spreading a disease that admits immunity after infection is unlike similar infections which either offer little to no immunity post-infection or are lifelong infections. This creates the need for a new model framework that incorporates pair formation structure with recovery. While seemingly a straight forward model, we show how new dynamics arise from the combination of pair formation and recovery that are not present in a standard model with recovery and also not present in a pair formation model without recovery. We see that the combination of these two properties allows for waves of infection that are not seen in a standard SIR model. These dynamics suggest that outbreaks of mpox around the world may require special attention from public health. We also derive a reproduction number for this model and estimate the reproduction number of human mpox to be 2.3 using global and Canadian data. The expression derived for R0 can help estimate key parameters for diseases transmission and public health interventions and compare to equivalent models without pair formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有恢复的成对形成模型:在猴痘上的应用。
猴痘目前的全球疫情在传播方式上似乎是一种独特的传染病:据观察,它高度集中在通过配对与男性发生性关系(MSM)的男性社区,并提供持久的免疫力。这种主要是近距离、长时间接触传播疾病并在感染后获得免疫力的框架不同于类似的感染,后者要么在感染后几乎没有免疫力,要么是终身感染。这就需要一个新的模型框架,将成对形成结构与恢复结合起来。虽然看起来是一个直截了当的模型,但我们展示了结对和恢复的结合是如何产生新的动力学的,这些动力学在有恢复的标准模型中不存在,在没有恢复的结对模型中也不存在。我们看到,这两种特性的结合允许出现标准SIR模型中没有的感染波。这些动态表明,猴痘在世界各地的爆发可能需要公共卫生部门的特别关注。我们还导出了该模型的繁殖数量,并使用全球和加拿大的数据估计人类猴痘的繁殖数量为≈2.3。R0的表达式可以帮助估计疾病传播和公共卫生干预的关键参数,并与没有配对的等效模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
期刊最新文献
Estimating pathogen spread using structured coalescent and birth–death models: A quantitative comparison Quantifying the impact of prevalence-dependent adaptive behavior on COVID-19 transmission: A modeling case study in Maryland Impact of COVID-19 control measures on respiratory syncytial virus and hand-foot-and-mouth disease transmission in Hong Kong and South Korea The effects of HIV self-testing on HIV incidence and awareness of status among men who have sex with men in the United States: Insights from a novel compartmental model Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1