Modelling COVID-19 in the North American region with a metapopulation network and Kalman filter

IF 3 3区 医学 Q2 INFECTIOUS DISEASES Epidemics Pub Date : 2025-01-26 DOI:10.1016/j.epidem.2025.100818
Matteo Perini , Teresa K. Yamana , Marta Galanti , Jiyeon Suh , Roselyn Kaondera-Shava , Jeffrey Shaman
{"title":"Modelling COVID-19 in the North American region with a metapopulation network and Kalman filter","authors":"Matteo Perini ,&nbsp;Teresa K. Yamana ,&nbsp;Marta Galanti ,&nbsp;Jiyeon Suh ,&nbsp;Roselyn Kaondera-Shava ,&nbsp;Jeffrey Shaman","doi":"10.1016/j.epidem.2025.100818","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Understanding the dynamics of infectious disease spread and predicting clinical outcomes are critical for managing large-scale epidemics and pandemics, such as COVID-19. Effective modeling of disease transmission in interconnected populations helps inform public health responses and interventions across regions.</div></div><div><h3>Methods</h3><div>We developed a novel metapopulation model for simulating respiratory virus transmission in the North America region, specifically for the 96 states, provinces, and territories of Canada, Mexico, and the United States. The model is informed by COVID-19 case data, which are assimilated using the Ensemble Adjustment Kalman filter (EAKF), a Bayesian inference algorithm. Additionally, commuting and mobility data are used to build and adjust the network and movement across locations on a daily basis.</div></div><div><h3>Results</h3><div>This model-inference system provides estimates of transmission dynamics, infection rates, and ascertainment rates for each of the 96 locations from January 2020 to March 2021. The results highlight differences in disease dynamics and ascertainment among the three countries.</div></div><div><h3>Conclusions</h3><div>The metapopulation structure enables rapid simulation at a large scale, and the data assimilation method makes the system responsive to changes in system dynamics. This model can serve as a versatile platform for modeling other infectious diseases across the North American region.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"50 ","pages":"Article 100818"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436525000064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Understanding the dynamics of infectious disease spread and predicting clinical outcomes are critical for managing large-scale epidemics and pandemics, such as COVID-19. Effective modeling of disease transmission in interconnected populations helps inform public health responses and interventions across regions.

Methods

We developed a novel metapopulation model for simulating respiratory virus transmission in the North America region, specifically for the 96 states, provinces, and territories of Canada, Mexico, and the United States. The model is informed by COVID-19 case data, which are assimilated using the Ensemble Adjustment Kalman filter (EAKF), a Bayesian inference algorithm. Additionally, commuting and mobility data are used to build and adjust the network and movement across locations on a daily basis.

Results

This model-inference system provides estimates of transmission dynamics, infection rates, and ascertainment rates for each of the 96 locations from January 2020 to March 2021. The results highlight differences in disease dynamics and ascertainment among the three countries.

Conclusions

The metapopulation structure enables rapid simulation at a large scale, and the data assimilation method makes the system responsive to changes in system dynamics. This model can serve as a versatile platform for modeling other infectious diseases across the North American region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
期刊最新文献
Modelling COVID-19 in the North American region with a metapopulation network and Kalman filter Estimating the generation time for influenza transmission using household data in the United States Reconstructing the first COVID-19 pandemic wave with minimal data in England Retrospective modelling of the disease and mortality burden of the 1918–1920 influenza pandemic in Zurich, Switzerland Flusion: Integrating multiple data sources for accurate influenza predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1