Matteo Perini , Teresa K. Yamana , Marta Galanti , Jiyeon Suh , Roselyn Kaondera-Shava , Jeffrey Shaman
{"title":"Modelling COVID-19 in the North American region with a metapopulation network and Kalman filter","authors":"Matteo Perini , Teresa K. Yamana , Marta Galanti , Jiyeon Suh , Roselyn Kaondera-Shava , Jeffrey Shaman","doi":"10.1016/j.epidem.2025.100818","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Understanding the dynamics of infectious disease spread and predicting clinical outcomes are critical for managing large-scale epidemics and pandemics, such as COVID-19. Effective modeling of disease transmission in interconnected populations helps inform public health responses and interventions across regions.</div></div><div><h3>Methods</h3><div>We developed a novel metapopulation model for simulating respiratory virus transmission in the North America region, specifically for the 96 states, provinces, and territories of Canada, Mexico, and the United States. The model is informed by COVID-19 case data, which are assimilated using the Ensemble Adjustment Kalman filter (EAKF), a Bayesian inference algorithm. Additionally, commuting and mobility data are used to build and adjust the network and movement across locations on a daily basis.</div></div><div><h3>Results</h3><div>This model-inference system provides estimates of transmission dynamics, infection rates, and ascertainment rates for each of the 96 locations from January 2020 to March 2021. The results highlight differences in disease dynamics and ascertainment among the three countries.</div></div><div><h3>Conclusions</h3><div>The metapopulation structure enables rapid simulation at a large scale, and the data assimilation method makes the system responsive to changes in system dynamics. This model can serve as a versatile platform for modeling other infectious diseases across the North American region.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"50 ","pages":"Article 100818"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436525000064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Understanding the dynamics of infectious disease spread and predicting clinical outcomes are critical for managing large-scale epidemics and pandemics, such as COVID-19. Effective modeling of disease transmission in interconnected populations helps inform public health responses and interventions across regions.
Methods
We developed a novel metapopulation model for simulating respiratory virus transmission in the North America region, specifically for the 96 states, provinces, and territories of Canada, Mexico, and the United States. The model is informed by COVID-19 case data, which are assimilated using the Ensemble Adjustment Kalman filter (EAKF), a Bayesian inference algorithm. Additionally, commuting and mobility data are used to build and adjust the network and movement across locations on a daily basis.
Results
This model-inference system provides estimates of transmission dynamics, infection rates, and ascertainment rates for each of the 96 locations from January 2020 to March 2021. The results highlight differences in disease dynamics and ascertainment among the three countries.
Conclusions
The metapopulation structure enables rapid simulation at a large scale, and the data assimilation method makes the system responsive to changes in system dynamics. This model can serve as a versatile platform for modeling other infectious diseases across the North American region.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.